Xianbin
commited on
Commit
•
881b143
1
Parent(s):
83f8193
Update instruct model to latest weights
Browse files- README.md +51 -42
- adapt_tokenizer.py +8 -5
- added_tokens.json +0 -6
- attention.py +512 -115
- blocks.py +52 -12
- config.json +15 -0
- configuration_mpt.py +227 -45
- custom_embedding.py +3 -2
- fc.py +5 -3
- ffn.py +153 -19
- flash_attn_triton.py +715 -114
- hf_prefixlm_converter.py +1 -0
- meta_init_context.py +32 -10
- model-00001-of-00004.safetensors +1 -1
- model-00002-of-00004.safetensors +1 -1
- model-00003-of-00004.safetensors +1 -1
- model-00004-of-00004.safetensors +1 -1
- modeling_mpt.py +437 -124
- norm.py +80 -15
- param_init_fns.py +242 -41
- warnings.py +20 -0
README.md
CHANGED
@@ -5,26 +5,11 @@ license: mit
|
|
5 |
|
6 |
SEA-LION is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for the Southeast Asia (SEA) region.
|
7 |
The size of the models range from 3 billion to 7 billion parameters.
|
8 |
-
This is the card for the SEA-LION 7B Instruct (Commercial) model.
|
9 |
|
10 |
-
|
|
|
11 |
|
12 |
-
SEA-LION stands for
|
13 |
-
|
14 |
-
|
15 |
-
## Model Details
|
16 |
-
|
17 |
-
### Model Description
|
18 |
-
|
19 |
-
The SEA-LION model is a significant leap forward in the field of Natural Language Processing,
|
20 |
-
specifically trained to understand the SEA regional context.
|
21 |
-
|
22 |
-
SEA-LION is built on the robust MPT architecture and has a vocabulary size of 256K.
|
23 |
-
|
24 |
-
For tokenization, the model employs our custom SEABPETokenizer, which is specially tailored for SEA languages, ensuring optimal model performance.
|
25 |
-
|
26 |
-
The pre-training data for the base SEA-LION model encompasses 980B tokens.
|
27 |
-
The model was then further instruction-tuned on a mixture of <b>commercially-permissive English and Indonesian data</b>.
|
28 |
|
29 |
- **Developed by:** Products Pillar, AI Singapore
|
30 |
- **Funded by:** Singapore NRF
|
@@ -32,19 +17,37 @@ The model was then further instruction-tuned on a mixture of <b>commercially-per
|
|
32 |
- **Languages:** English, Chinese, Indonesian, Malay, Thai, Vietnamese, Filipino, Tamil, Burmese, Khmer, Lao
|
33 |
- **License:** MIT License
|
34 |
|
|
|
|
|
|
|
|
|
35 |
### Benchmark Performance
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
### Usage
|
40 |
SEA-LION can be run using the 🤗 Transformers library
|
41 |
```python
|
42 |
# Please use transformers==4.37.2
|
43 |
|
44 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
45 |
|
46 |
-
tokenizer = AutoTokenizer.from_pretrained("aisingapore/sealion7b-instruct
|
47 |
-
model = AutoModelForCausalLM.from_pretrained("aisingapore/sealion7b-instruct
|
48 |
|
49 |
prompt_template = "### USER:\n{human_prompt}\n\n### RESPONSE:\n"
|
50 |
prompt = """Apa sentimen dari kalimat berikut ini?
|
@@ -57,34 +60,40 @@ output = model.generate(tokens["input_ids"], max_new_tokens=20, eos_token_id=tok
|
|
57 |
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
58 |
|
59 |
```
|
|
|
60 |
|
61 |
-
|
|
|
|
|
|
|
62 |
|
63 |
-
|
|
|
64 |
|
65 |
-
SEA-LION
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
74 |
|
75 |
-
|
|
|
76 |
|
77 |
-
|
78 |
-
The framework for training is [SentencePiece](https://github.com/google/sentencepiece).<br>
|
79 |
-
The tokenizer type is Byte-Pair Encoding (BPE).
|
80 |
|
81 |
-
|
82 |
|
83 |
-
|
|
|
84 |
|
85 |
## The Team
|
86 |
|
87 |
-
|
88 |
Leong Wei Qi<br>
|
89 |
Li Yier<br>
|
90 |
Liu Bing Jie Darius<br>
|
@@ -95,10 +104,11 @@ Ngui Jian Gang<br>
|
|
95 |
Nguyen Thanh Ngan<br>
|
96 |
Ong Tat-Wee David<br>
|
97 |
Rengarajan Hamsawardhini<br>
|
|
|
98 |
Susanto Yosephine<br>
|
99 |
Tai Ngee Chia<br>
|
100 |
Tan Choon Meng<br>
|
101 |
-
|
102 |
Teo Eng Sipp Leslie<br>
|
103 |
Teo Wei Yi<br>
|
104 |
Tjhi William<br>
|
@@ -107,8 +117,7 @@ Yong Xianbin<br>
|
|
107 |
|
108 |
## Acknowledgements
|
109 |
|
110 |
-
AI Singapore is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore.
|
111 |
-
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore.
|
112 |
|
113 |
## Contact
|
114 |
|
|
|
5 |
|
6 |
SEA-LION is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for the Southeast Asia (SEA) region.
|
7 |
The size of the models range from 3 billion to 7 billion parameters.
|
|
|
8 |
|
9 |
+
SEA-LION-7B-Instruct is a multilingual model which has been fine-tuned with **thousands of English and Indonesian instruction-completion pairs** alongside a smaller pool of instruction-completion pairs from other ASEAN languages.
|
10 |
+
These instructions have been carefully curated and rewritten to ensure the model is trained on truly open, commercially permissive and high quality datasets.
|
11 |
|
12 |
+
SEA-LION stands for _Southeast Asian Languages In One Network_.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
- **Developed by:** Products Pillar, AI Singapore
|
15 |
- **Funded by:** Singapore NRF
|
|
|
17 |
- **Languages:** English, Chinese, Indonesian, Malay, Thai, Vietnamese, Filipino, Tamil, Burmese, Khmer, Lao
|
18 |
- **License:** MIT License
|
19 |
|
20 |
+
## Model Details
|
21 |
+
### Base model
|
22 |
+
We perform instruction tuning in English and Indonesian on our [pre-trained SEA-LION-7B](https://huggingface.co/aisingapore/sealion7b), a decoder model using the MPT architecture, to create SEA-LION-7B-Instruct.
|
23 |
+
|
24 |
### Benchmark Performance
|
25 |
+
We evaluated SEA-LION-7B-Instruct on the BHASA benchmark ([arXiv](https://arxiv.org/abs/2309.06085v2) and [GitHub](https://github.com/aisingapore/bhasa)) across a variety of tasks.
|
26 |
+
|
27 |
+
BHASA stands out amongst other evaluations for SEA languages for its holistic approach to evaluation, including not just traditional Natural Language Processing (NLP) benchmarking tasks (such as sentiment analysis and question answering), but also linguistic and cultural diagnostic tests which are meticulously handcrafted.
|
28 |
+
|
29 |
+
The scores shown in the table below have been adjusted to only consider answers provided in the appropriate language.
|
30 |
|
31 |
+
| Model | QA (F1) | Sentiment (F1) | Toxicity (F1) | Eng>Indo (ChrF++) | Indo>Eng (ChrF++) | Summary (ROUGE-L) | NLI (Acc) | Causal (Acc) |
|
32 |
+
|--------------------------------|---------|----------------|---------------|-------------------|-------------------|-------------------|-----------|--------------|
|
33 |
+
| SEA-LION-7B-Instruct-Research | 24.86 | 76.13 | 24.45 | 52.50 | 46.82 | 15.44 | 33.20 | 23.80 |
|
34 |
+
| SEA-LION-7B-Instruct | 68.41 | 91.45 | 17.98 | 57.48 | 58.04 | 17.54 | 53.10 | 60.80 |
|
35 |
+
| SeaLLM 7B v1 | 30.96 | 56.29 | 22.60 | 62.23 | 41.55 | 14.03 | 26.50 | 56.60 |
|
36 |
+
| SeaLLM 7B v2 | 44.40 | 80.13 | 55.24 | 64.01 | 63.28 | 17.31 | 43.60 | 82.00 |
|
37 |
+
| Sailor-7B | 65.43 | 59.48 | 20.48 | 64.27 | 60.68 | 8.69 | 15.10 | 38.40 |
|
38 |
+
| Llama 2 7B Chat | 11.12 | 52.32 | 0.00 | 44.09 | 57.58 | 9.24 | 0.00 | 0.00 |
|
39 |
+
| Mistral 7B Instruct v0.1 | 38.85 | 74.38 | 20.83 | 30.60 | 51.43 | 15.63 | 28.60 | 50.80 |
|
40 |
+
| GPT-4 | 73.60 | 74.14 | 63.96 | 69.38 | 67.53 | 18.71 | 83.20 | 96.00 |
|
41 |
|
42 |
+
### Usage
|
43 |
SEA-LION can be run using the 🤗 Transformers library
|
44 |
```python
|
45 |
# Please use transformers==4.37.2
|
46 |
|
47 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
48 |
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained("aisingapore/sealion7b-instruct", trust_remote_code=True)
|
50 |
+
model = AutoModelForCausalLM.from_pretrained("aisingapore/sealion7b-instruct", trust_remote_code=True)
|
51 |
|
52 |
prompt_template = "### USER:\n{human_prompt}\n\n### RESPONSE:\n"
|
53 |
prompt = """Apa sentimen dari kalimat berikut ini?
|
|
|
60 |
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
61 |
|
62 |
```
|
63 |
+
### Prompting Guide
|
64 |
|
65 |
+
_Coming soon_
|
66 |
+
|
67 |
+
### Caveats
|
68 |
+
It is important for users to be aware that our model exhibits certain limitations that warrant consideration. Firstly, like many LLMs, the model can hallucinate and occasionally generates irrelevant content, introducing fictional elements that are not grounded in the provided context. Users should also exercise caution in interpreting and validating the model's responses due to the potential inconsistencies in its reasoning. Finally, it should be noted that the model has not been optimized for multi-turn dialogue interactions, which may result in reduced effectiveness in extended conversations.
|
69 |
|
70 |
+
## Limitations
|
71 |
+
### Safety
|
72 |
|
73 |
+
Current SEA-LION models, including this commercially permissive release, have not been aligned for safety. Developers and users should perform their own safety fine-tuning and related security measures. In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights and codes.
|
74 |
|
75 |
+
### Commercially Non-Permissive and Commercially Permissive SEA-LION Releases
|
76 |
+
|
77 |
+
The previous release of the commercially non-permissive SEA-LION-Instruct-Research enabled us to explore the full research potential of SEA-LION when allowed to take full advantage of what is publicly available. In contrast, in building the commercially permissive SEA-LION-7B-Instruct, we had to leave out high-quality instruction data that was either proprietary, restricted by non-commercial licenses or in a legal gray area, leaving us with a much smaller proportion of commercially permissive data to work with — a problem that is even more pronounced for low-resource languages. We thus hope this will sound a call to action for more initiatives to create commercially viable data in the region, enabling practical benefits for all.
|
78 |
+
|
79 |
+
|
80 |
+
## Technical Specifications
|
81 |
+
### Fine-Tuning Details
|
82 |
+
The SEA-LION-7B-Instruct was fine-tuned using 8x A100-40GB using parameter efficient fine tuning in the form of LoRA.
|
83 |
|
84 |
+
## Data
|
85 |
+
SEA-LION-7B-Instruct was trained on a wide range of instructions that were manually and stringently verified by our team. A large portion of the effort was dedicated to ensuring that each instruction-completion pair that the model sees is of a high quality and any errors were corrected and rewritten by native speakers or else dropped from our mix.
|
86 |
|
87 |
+
In addition, special care was taken to ensure that the datasets used had commercially permissive licenses through verification with the original data source.
|
|
|
|
|
88 |
|
89 |
+
Link to dataset: _coming soon_
|
90 |
|
91 |
+
## Call for Contributions
|
92 |
+
We encourage researchers, developers, and language enthusiasts to actively contribute to the enhancement and expansion of SEA-LION. Contributions can involve identifying and reporting bugs, sharing pre-training, instruction, and preference data, improving documentation usability, proposing and implementing new model evaluation tasks and metrics, or training versions of the model in additional Southeast Asian languages. Join us in shaping the future of SEA-LION by sharing your expertise and insights to make these models more accessible, accurate, and versatile. Please check out our GitHub for further information on the call for contributions.
|
93 |
|
94 |
## The Team
|
95 |
|
96 |
+
Lau Wayne<br>
|
97 |
Leong Wei Qi<br>
|
98 |
Li Yier<br>
|
99 |
Liu Bing Jie Darius<br>
|
|
|
104 |
Nguyen Thanh Ngan<br>
|
105 |
Ong Tat-Wee David<br>
|
106 |
Rengarajan Hamsawardhini<br>
|
107 |
+
Siow Bryan<br>
|
108 |
Susanto Yosephine<br>
|
109 |
Tai Ngee Chia<br>
|
110 |
Tan Choon Meng<br>
|
111 |
+
Teng Walter<br>
|
112 |
Teo Eng Sipp Leslie<br>
|
113 |
Teo Wei Yi<br>
|
114 |
Tjhi William<br>
|
|
|
117 |
|
118 |
## Acknowledgements
|
119 |
|
120 |
+
[AI Singapore](https://aisingapore.org/) is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the National Research Foundation or the National University of Singapore.
|
|
|
121 |
|
122 |
## Contact
|
123 |
|
adapt_tokenizer.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
from typing import Any
|
2 |
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
|
|
3 |
NUM_SENTINEL_TOKENS: int = 100
|
4 |
|
|
|
5 |
def adapt_tokenizer_for_denoising(tokenizer: PreTrainedTokenizerBase) -> None:
|
6 |
"""Adds sentinel tokens and padding token (if missing).
|
7 |
|
@@ -11,16 +13,17 @@ def adapt_tokenizer_for_denoising(tokenizer: PreTrainedTokenizerBase) -> None:
|
|
11 |
All added tokens are added as special tokens. No tokens are
|
12 |
added if sentinel tokens and padding token already exist.
|
13 |
"""
|
14 |
-
sentinels_to_add = [f
|
15 |
tokenizer.add_tokens(sentinels_to_add, special_tokens=True)
|
16 |
if tokenizer.pad_token is None:
|
17 |
-
tokenizer.add_tokens(
|
18 |
-
tokenizer.pad_token =
|
19 |
assert tokenizer.pad_token_id is not None
|
20 |
-
sentinels =
|
21 |
_sentinel_token_ids = tokenizer(sentinels, add_special_tokens=False).input_ids
|
22 |
tokenizer.sentinel_token_ids = _sentinel_token_ids
|
23 |
|
|
|
24 |
class AutoTokenizerForMOD(AutoTokenizer):
|
25 |
"""AutoTokenizer + Adaptation for MOD.
|
26 |
|
@@ -37,4 +40,4 @@ class AutoTokenizerForMOD(AutoTokenizer):
|
|
37 |
"""See `AutoTokenizer.from_pretrained` docstring."""
|
38 |
tokenizer = super().from_pretrained(*args, **kwargs)
|
39 |
adapt_tokenizer_for_denoising(tokenizer)
|
40 |
-
return tokenizer
|
|
|
1 |
from typing import Any
|
2 |
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
3 |
+
|
4 |
NUM_SENTINEL_TOKENS: int = 100
|
5 |
|
6 |
+
|
7 |
def adapt_tokenizer_for_denoising(tokenizer: PreTrainedTokenizerBase) -> None:
|
8 |
"""Adds sentinel tokens and padding token (if missing).
|
9 |
|
|
|
13 |
All added tokens are added as special tokens. No tokens are
|
14 |
added if sentinel tokens and padding token already exist.
|
15 |
"""
|
16 |
+
sentinels_to_add = [f"<extra_id_{i}>" for i in range(NUM_SENTINEL_TOKENS)]
|
17 |
tokenizer.add_tokens(sentinels_to_add, special_tokens=True)
|
18 |
if tokenizer.pad_token is None:
|
19 |
+
tokenizer.add_tokens("<pad>", special_tokens=True)
|
20 |
+
tokenizer.pad_token = "<pad>"
|
21 |
assert tokenizer.pad_token_id is not None
|
22 |
+
sentinels = "".join([f"<extra_id_{i}>" for i in range(NUM_SENTINEL_TOKENS)])
|
23 |
_sentinel_token_ids = tokenizer(sentinels, add_special_tokens=False).input_ids
|
24 |
tokenizer.sentinel_token_ids = _sentinel_token_ids
|
25 |
|
26 |
+
|
27 |
class AutoTokenizerForMOD(AutoTokenizer):
|
28 |
"""AutoTokenizer + Adaptation for MOD.
|
29 |
|
|
|
40 |
"""See `AutoTokenizer.from_pretrained` docstring."""
|
41 |
tokenizer = super().from_pretrained(*args, **kwargs)
|
42 |
adapt_tokenizer_for_denoising(tokenizer)
|
43 |
+
return tokenizer
|
added_tokens.json
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"<unk>": 0,
|
3 |
-
"<|endofline|>": 2,
|
4 |
-
"<|endoftext|>": 1,
|
5 |
-
"<|padding|>": 3
|
6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attention.py
CHANGED
@@ -1,37 +1,63 @@
|
|
1 |
"""Attention layers."""
|
|
|
2 |
import math
|
3 |
import warnings
|
4 |
-
from typing import Any,
|
5 |
import torch
|
6 |
import torch.nn as nn
|
|
|
7 |
from einops import rearrange
|
8 |
from packaging import version
|
9 |
from torch import nn
|
10 |
from .fc import FC_CLASS_REGISTRY
|
11 |
from .norm import NORM_CLASS_REGISTRY
|
12 |
|
13 |
-
|
|
|
|
|
14 |
try:
|
15 |
import flash_attn as flash_attn
|
16 |
except:
|
17 |
return False
|
18 |
-
return version.parse(flash_attn.__version__) >= version.parse(
|
|
|
19 |
|
20 |
def is_flash_v1_installed():
|
21 |
try:
|
22 |
import flash_attn as flash_attn
|
23 |
except:
|
24 |
return False
|
25 |
-
return version.parse(flash_attn.__version__) < version.parse(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
if original_is_causal and num_query_tokens != num_key_tokens:
|
29 |
if num_query_tokens != 1:
|
30 |
-
raise NotImplementedError(
|
|
|
|
|
31 |
else:
|
32 |
return False
|
33 |
return original_is_causal
|
34 |
|
|
|
35 |
def repeat_kv_for_gqa(hidden: torch.Tensor, n_rep: int) -> torch.Tensor:
|
36 |
"""Perform repeat of kv heads along a particular dimension.
|
37 |
|
@@ -45,16 +71,27 @@ def repeat_kv_for_gqa(hidden: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
45 |
hidden = hidden[:, :, :, None, :].expand(b, s, kv_n_heads, n_rep, d)
|
46 |
return hidden.reshape(b, s, kv_n_heads * n_rep, d)
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
if past_key_value is not None:
|
59 |
if len(past_key_value) != 0:
|
60 |
k = torch.cat([past_key_value[0], k], dim=3)
|
@@ -72,14 +109,28 @@ def scaled_multihead_dot_product_attention(query: torch.Tensor, key: torch.Tenso
|
|
72 |
_s_q = max(0, attn_bias.size(2) - s_q)
|
73 |
_s_k = max(0, attn_bias.size(3) - s_k)
|
74 |
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
75 |
-
if
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
attn_weight = attn_weight + attn_bias
|
78 |
min_val = torch.finfo(q.dtype).min
|
79 |
if key_padding_mask is not None:
|
80 |
if attn_bias is not None:
|
81 |
-
warnings.warn(
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
if is_causal and (not q.size(2) == 1):
|
84 |
s = max(s_q, s_k)
|
85 |
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float32)
|
@@ -90,92 +141,195 @@ def scaled_multihead_dot_product_attention(query: torch.Tensor, key: torch.Tenso
|
|
90 |
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val)
|
91 |
attn_weight = torch.softmax(attn_weight, dim=-1)
|
92 |
if dropout_p:
|
93 |
-
attn_weight = torch.nn.functional.dropout(
|
|
|
|
|
94 |
out = attn_weight.to(v.dtype).matmul(v)
|
95 |
-
out = rearrange(out,
|
96 |
if needs_weights:
|
97 |
return (out, attn_weight, past_key_value)
|
98 |
return (out, None, past_key_value)
|
99 |
|
100 |
-
|
|
|
|
|
|
|
101 |
if valid_dtypes is None:
|
102 |
valid_dtypes = [torch.float16, torch.bfloat16]
|
103 |
for tensor in tensors:
|
104 |
if tensor.dtype not in valid_dtypes:
|
105 |
-
raise TypeError(
|
|
|
|
|
106 |
if not tensor.is_cuda:
|
107 |
-
raise TypeError(
|
|
|
|
|
108 |
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
try:
|
111 |
from flash_attn import bert_padding, flash_attn_interface
|
112 |
except:
|
113 |
-
raise RuntimeError(
|
114 |
check_valid_inputs(query, key, value)
|
115 |
-
if multiquery:
|
116 |
-
warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.'))
|
117 |
-
kv_n_heads = 1
|
118 |
-
elif kv_n_heads is None:
|
119 |
-
warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.'))
|
120 |
-
kv_n_heads = n_heads
|
121 |
if past_key_value is not None:
|
122 |
if len(past_key_value) != 0:
|
123 |
key = torch.cat([past_key_value[0], key], dim=1)
|
124 |
value = torch.cat([past_key_value[1], value], dim=1)
|
125 |
past_key_value = (key, value)
|
126 |
if attn_bias is not None:
|
127 |
-
|
128 |
-
_s_k = max(0, attn_bias.size(3) - key.size(1))
|
129 |
-
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
130 |
-
if attn_bias is not None:
|
131 |
-
raise NotImplementedError(f'attn_bias not implemented for flash attn.')
|
132 |
(batch_size, seqlen) = query.shape[:2]
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
dropout_p = dropout_p if training else 0.0
|
149 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
150 |
if is_flash_v1_installed():
|
151 |
-
output_unpad = flash_attn_interface.flash_attn_unpadded_func(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
elif is_flash_v2_installed():
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
else:
|
155 |
-
raise RuntimeError(
|
156 |
-
output = bert_padding.pad_input(
|
|
|
|
|
157 |
return (output, None, past_key_value)
|
158 |
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
try:
|
161 |
from .flash_attn_triton import flash_attn_func
|
162 |
except:
|
163 |
_installed = False
|
164 |
-
if version.parse(torch.__version__) < version.parse(
|
165 |
_installed = True
|
166 |
try:
|
167 |
from flash_attn.flash_attn_triton import flash_attn_func
|
168 |
except:
|
169 |
_installed = False
|
170 |
if not _installed:
|
171 |
-
raise RuntimeError(
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
check_valid_inputs(query, key, value)
|
173 |
-
if multiquery:
|
174 |
-
warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.'))
|
175 |
-
kv_n_heads = 1
|
176 |
-
elif kv_n_heads is None:
|
177 |
-
warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.'))
|
178 |
-
kv_n_heads = n_heads
|
179 |
if past_key_value is not None:
|
180 |
if len(past_key_value) != 0:
|
181 |
key = torch.cat([past_key_value[0], key], dim=1)
|
@@ -186,19 +340,27 @@ def triton_flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Te
|
|
186 |
_s_k = max(0, attn_bias.size(3) - key.size(1))
|
187 |
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
188 |
if dropout_p:
|
189 |
-
raise NotImplementedError(f
|
190 |
dropout_p = dropout_p if training else 0.0
|
191 |
if needs_weights:
|
192 |
-
raise NotImplementedError(f
|
193 |
if key_padding_mask is not None:
|
194 |
-
warnings.warn(
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
(b_size, s_k) = key_padding_mask.shape[:2]
|
196 |
if attn_bias is None:
|
197 |
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
|
198 |
-
attn_bias = attn_bias.masked_fill(
|
199 |
-
|
200 |
-
|
201 |
-
|
|
|
|
|
202 |
if kv_n_heads == 1:
|
203 |
key = key.repeat(1, 1, n_heads, 1)
|
204 |
value = value.repeat(1, 1, n_heads, 1)
|
@@ -206,10 +368,13 @@ def triton_flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Te
|
|
206 |
key = repeat_kv_for_gqa(key, n_heads // kv_n_heads)
|
207 |
value = repeat_kv_for_gqa(value, n_heads // kv_n_heads)
|
208 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
209 |
-
attn_output = flash_attn_func(
|
|
|
|
|
210 |
output = attn_output.view(*attn_output.shape[:2], -1)
|
211 |
return (output, None, past_key_value)
|
212 |
|
|
|
213 |
class GroupedQueryAttention(nn.Module):
|
214 |
"""Grouped Query Attention (GQA) is a generalization of Multi-head (MHA).
|
215 |
|
@@ -220,59 +385,177 @@ class GroupedQueryAttention(nn.Module):
|
|
220 |
implementation enables user to also use additive bias.
|
221 |
"""
|
222 |
|
223 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
super().__init__()
|
225 |
self.attn_impl = attn_impl
|
226 |
self.clip_qkv = clip_qkv
|
227 |
self.qk_ln = qk_ln
|
|
|
228 |
self.d_model = d_model
|
229 |
self.n_heads = n_heads
|
230 |
self.kv_n_heads = kv_n_heads
|
|
|
231 |
self.head_dim = d_model // n_heads
|
232 |
if self.kv_n_heads <= 0:
|
233 |
-
raise ValueError(
|
234 |
if self.kv_n_heads > self.n_heads:
|
235 |
-
raise ValueError(
|
|
|
|
|
236 |
if self.n_heads % self.kv_n_heads != 0:
|
237 |
-
raise ValueError(
|
|
|
|
|
|
|
|
|
238 |
self.softmax_scale = softmax_scale
|
239 |
if self.softmax_scale is None:
|
240 |
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
|
241 |
self.attn_dropout_p = attn_pdrop
|
242 |
-
fc_kwargs: dict[str, Any] = {
|
243 |
-
if fc_type !=
|
244 |
-
fc_kwargs[
|
245 |
-
self.Wqkv = FC_CLASS_REGISTRY[fc_type](
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
self.Wqkv._fused = (0, fuse_splits)
|
248 |
-
if self.qk_ln:
|
249 |
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
|
250 |
-
|
251 |
-
self.
|
252 |
-
|
|
|
|
|
|
|
253 |
self.attn_fn = flash_attn_fn
|
254 |
-
elif self.attn_impl ==
|
255 |
self.attn_fn = triton_flash_attn_fn
|
256 |
-
elif self.attn_impl ==
|
257 |
self.attn_fn = scaled_multihead_dot_product_attention
|
258 |
else:
|
259 |
-
raise ValueError(f
|
260 |
-
self.out_proj = FC_CLASS_REGISTRY[fc_type](
|
|
|
|
|
261 |
self.out_proj._is_residual = True
|
262 |
|
263 |
-
def forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
qkv = self.Wqkv(x)
|
265 |
if self.clip_qkv:
|
266 |
qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv)
|
267 |
-
(query, key, value) = qkv.split(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
key_padding_mask = attention_mask
|
269 |
-
if self.qk_ln:
|
|
|
|
|
|
|
|
|
|
|
270 |
dtype = query.dtype
|
271 |
-
query = self.q_ln(query).to(dtype)
|
272 |
-
key = self.k_ln(key).to(dtype)
|
273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
return (self.out_proj(context), attn_weights, past_key_value)
|
275 |
|
|
|
276 |
class MultiheadAttention(GroupedQueryAttention):
|
277 |
"""Multi-head self attention.
|
278 |
|
@@ -280,8 +563,39 @@ class MultiheadAttention(GroupedQueryAttention):
|
|
280 |
additive bias.
|
281 |
"""
|
282 |
|
283 |
-
def __init__(
|
284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
class MultiQueryAttention(GroupedQueryAttention):
|
287 |
"""Multi-Query self attention.
|
@@ -290,13 +604,52 @@ class MultiQueryAttention(GroupedQueryAttention):
|
|
290 |
additive bias.
|
291 |
"""
|
292 |
|
293 |
-
def __init__(
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
|
296 |
-
|
297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
return None
|
299 |
-
elif attn_impl in [
|
300 |
if alibi:
|
301 |
if (prefix_lm or not causal) or use_sequence_id:
|
302 |
return (1, n_heads, seq_len, seq_len)
|
@@ -305,34 +658,78 @@ def attn_bias_shape(attn_impl: str, n_heads: int, seq_len: int, alibi: bool, pre
|
|
305 |
return (1, 1, seq_len, seq_len)
|
306 |
return None
|
307 |
else:
|
308 |
-
raise ValueError(f
|
|
|
309 |
|
310 |
-
def build_attn_bias(
|
311 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
return None
|
313 |
-
elif attn_impl in [
|
314 |
if alibi:
|
315 |
(device, dtype) = (attn_bias.device, attn_bias.dtype)
|
316 |
-
attn_bias = attn_bias.add(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
return attn_bias
|
318 |
else:
|
319 |
-
raise ValueError(f
|
320 |
|
321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
_n_heads = 2 ** math.ceil(math.log2(n_heads))
|
323 |
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
|
324 |
m = m.mul(alibi_bias_max / _n_heads)
|
325 |
slopes = 1.0 / torch.pow(2, m)
|
326 |
if _n_heads != n_heads:
|
327 |
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
|
|
|
|
|
328 |
return slopes.view(1, n_heads, 1, 1)
|
329 |
|
330 |
-
|
331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
if full:
|
333 |
-
alibi_bias = alibi_bias - torch.arange(
|
|
|
|
|
334 |
alibi_bias = alibi_bias.abs().mul(-1)
|
335 |
slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
|
336 |
alibi_bias = alibi_bias * slopes
|
337 |
return alibi_bias.to(dtype=dtype)
|
338 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""Attention layers."""
|
2 |
+
|
3 |
import math
|
4 |
import warnings
|
5 |
+
from typing import Any, Optional
|
6 |
import torch
|
7 |
import torch.nn as nn
|
8 |
+
import transformers
|
9 |
from einops import rearrange
|
10 |
from packaging import version
|
11 |
from torch import nn
|
12 |
from .fc import FC_CLASS_REGISTRY
|
13 |
from .norm import NORM_CLASS_REGISTRY
|
14 |
|
15 |
+
|
16 |
+
def is_flash_v2_installed(v2_version: str = "2.0.0"):
|
17 |
+
assert version.parse(v2_version) >= version.parse("2.0.0")
|
18 |
try:
|
19 |
import flash_attn as flash_attn
|
20 |
except:
|
21 |
return False
|
22 |
+
return version.parse(flash_attn.__version__) >= version.parse(v2_version)
|
23 |
+
|
24 |
|
25 |
def is_flash_v1_installed():
|
26 |
try:
|
27 |
import flash_attn as flash_attn
|
28 |
except:
|
29 |
return False
|
30 |
+
return version.parse(flash_attn.__version__) < version.parse("2.0.0")
|
31 |
+
|
32 |
+
|
33 |
+
def is_transformers_version_gte(hf_version: str) -> bool:
|
34 |
+
return version.parse(transformers.__version__) >= version.parse(hf_version)
|
35 |
+
|
36 |
+
|
37 |
+
def check_alibi_support(attention_impl: str) -> bool:
|
38 |
+
return attention_impl != "flash" or is_flash_v2_installed(v2_version="v2.4.2")
|
39 |
+
|
40 |
|
41 |
+
if is_flash_v1_installed():
|
42 |
+
import transformers
|
43 |
+
|
44 |
+
transformers.utils.is_flash_attn_available = lambda: False
|
45 |
+
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
|
46 |
+
|
47 |
+
|
48 |
+
def _reset_is_causal(
|
49 |
+
num_query_tokens: int, num_key_tokens: int, original_is_causal: bool
|
50 |
+
) -> bool:
|
51 |
if original_is_causal and num_query_tokens != num_key_tokens:
|
52 |
if num_query_tokens != 1:
|
53 |
+
raise NotImplementedError(
|
54 |
+
"MPT does not support query and key with different number of tokens, unless number of query tokens is 1."
|
55 |
+
)
|
56 |
else:
|
57 |
return False
|
58 |
return original_is_causal
|
59 |
|
60 |
+
|
61 |
def repeat_kv_for_gqa(hidden: torch.Tensor, n_rep: int) -> torch.Tensor:
|
62 |
"""Perform repeat of kv heads along a particular dimension.
|
63 |
|
|
|
71 |
hidden = hidden[:, :, :, None, :].expand(b, s, kv_n_heads, n_rep, d)
|
72 |
return hidden.reshape(b, s, kv_n_heads * n_rep, d)
|
73 |
|
74 |
+
|
75 |
+
def scaled_multihead_dot_product_attention(
|
76 |
+
query: torch.Tensor,
|
77 |
+
key: torch.Tensor,
|
78 |
+
value: torch.Tensor,
|
79 |
+
n_heads: int,
|
80 |
+
kv_n_heads: int,
|
81 |
+
past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
|
82 |
+
softmax_scale: Optional[float] = None,
|
83 |
+
attn_bias: Optional[torch.Tensor] = None,
|
84 |
+
key_padding_mask: Optional[torch.Tensor] = None,
|
85 |
+
is_causal: bool = False,
|
86 |
+
dropout_p: float = 0.0,
|
87 |
+
training: bool = False,
|
88 |
+
needs_weights: bool = False,
|
89 |
+
) -> tuple[
|
90 |
+
torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]
|
91 |
+
]:
|
92 |
+
q = rearrange(query, "b s (h d) -> b h s d", h=n_heads)
|
93 |
+
k = rearrange(key, "b s (h d) -> b h d s", h=kv_n_heads)
|
94 |
+
v = rearrange(value, "b s (h d) -> b h s d", h=kv_n_heads)
|
95 |
if past_key_value is not None:
|
96 |
if len(past_key_value) != 0:
|
97 |
k = torch.cat([past_key_value[0], k], dim=3)
|
|
|
109 |
_s_q = max(0, attn_bias.size(2) - s_q)
|
110 |
_s_k = max(0, attn_bias.size(3) - s_k)
|
111 |
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
112 |
+
if (
|
113 |
+
attn_bias.size(-1) != 1
|
114 |
+
and attn_bias.size(-1) != s_k
|
115 |
+
or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q)
|
116 |
+
):
|
117 |
+
raise RuntimeError(
|
118 |
+
f"attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}."
|
119 |
+
)
|
120 |
attn_weight = attn_weight + attn_bias
|
121 |
min_val = torch.finfo(q.dtype).min
|
122 |
if key_padding_mask is not None:
|
123 |
if attn_bias is not None:
|
124 |
+
warnings.warn(
|
125 |
+
"Propagating key_padding_mask to the attention module "
|
126 |
+
+ "and applying it within the attention module can cause "
|
127 |
+
+ "unnecessary computation/memory usage. Consider integrating "
|
128 |
+
+ "into attn_bias once and passing that to each attention "
|
129 |
+
+ "module instead."
|
130 |
+
)
|
131 |
+
attn_weight = attn_weight.masked_fill(
|
132 |
+
~key_padding_mask.view((b, 1, 1, s_k)), min_val
|
133 |
+
)
|
134 |
if is_causal and (not q.size(2) == 1):
|
135 |
s = max(s_q, s_k)
|
136 |
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float32)
|
|
|
141 |
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val)
|
142 |
attn_weight = torch.softmax(attn_weight, dim=-1)
|
143 |
if dropout_p:
|
144 |
+
attn_weight = torch.nn.functional.dropout(
|
145 |
+
attn_weight, p=dropout_p, training=training, inplace=True
|
146 |
+
)
|
147 |
out = attn_weight.to(v.dtype).matmul(v)
|
148 |
+
out = rearrange(out, "b h s d -> b s (h d)")
|
149 |
if needs_weights:
|
150 |
return (out, attn_weight, past_key_value)
|
151 |
return (out, None, past_key_value)
|
152 |
|
153 |
+
|
154 |
+
def check_valid_inputs(
|
155 |
+
*tensors: torch.Tensor, valid_dtypes: Optional[list[torch.dtype]] = None
|
156 |
+
):
|
157 |
if valid_dtypes is None:
|
158 |
valid_dtypes = [torch.float16, torch.bfloat16]
|
159 |
for tensor in tensors:
|
160 |
if tensor.dtype not in valid_dtypes:
|
161 |
+
raise TypeError(
|
162 |
+
f"tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}."
|
163 |
+
)
|
164 |
if not tensor.is_cuda:
|
165 |
+
raise TypeError(
|
166 |
+
f"Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r})."
|
167 |
+
)
|
168 |
|
169 |
+
|
170 |
+
def flash_attn_fn(
|
171 |
+
query: torch.Tensor,
|
172 |
+
key: torch.Tensor,
|
173 |
+
value: torch.Tensor,
|
174 |
+
n_heads: int,
|
175 |
+
kv_n_heads: int,
|
176 |
+
past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
|
177 |
+
softmax_scale: Optional[float] = None,
|
178 |
+
attn_bias: Optional[torch.Tensor] = None,
|
179 |
+
key_padding_mask: Optional[torch.Tensor] = None,
|
180 |
+
is_causal: bool = False,
|
181 |
+
dropout_p: float = 0.0,
|
182 |
+
training: bool = False,
|
183 |
+
needs_weights: bool = False,
|
184 |
+
multiquery: bool = False,
|
185 |
+
should_repeat_kv_for_gqa: Optional[bool] = True,
|
186 |
+
sliding_window_size: int = -1,
|
187 |
+
alibi_slopes: Optional[torch.Tensor] = None,
|
188 |
+
flash_attn_padding_info: Optional[dict[str, torch.Tensor]] = None,
|
189 |
+
) -> tuple[
|
190 |
+
torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]
|
191 |
+
]:
|
192 |
+
if key_padding_mask is not None:
|
193 |
+
raise ValueError("key_padding_mask should be None for flash attn.")
|
194 |
+
del key_padding_mask
|
195 |
+
if flash_attn_padding_info is None:
|
196 |
+
raise ValueError("flash_attn_padding_info is required for flash attn.")
|
197 |
try:
|
198 |
from flash_attn import bert_padding, flash_attn_interface
|
199 |
except:
|
200 |
+
raise RuntimeError("Please install flash-attn==1.0.9 or flash-attn==2.3.6")
|
201 |
check_valid_inputs(query, key, value)
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
if past_key_value is not None:
|
203 |
if len(past_key_value) != 0:
|
204 |
key = torch.cat([past_key_value[0], key], dim=1)
|
205 |
value = torch.cat([past_key_value[1], value], dim=1)
|
206 |
past_key_value = (key, value)
|
207 |
if attn_bias is not None:
|
208 |
+
raise NotImplementedError(f"attn_bias not implemented for flash attn.")
|
|
|
|
|
|
|
|
|
209 |
(batch_size, seqlen) = query.shape[:2]
|
210 |
+
indices_q = flash_attn_padding_info["indices_q"]
|
211 |
+
indices_k = flash_attn_padding_info["indices_k"]
|
212 |
+
indices_v = flash_attn_padding_info["indices_v"]
|
213 |
+
cu_seqlens_q = flash_attn_padding_info["cu_seqlens_q"]
|
214 |
+
cu_seqlens_k = flash_attn_padding_info["cu_seqlens_k"]
|
215 |
+
max_seqlen_q = flash_attn_padding_info["max_seqlen_q"]
|
216 |
+
max_seqlen_k = flash_attn_padding_info["max_seqlen_k"]
|
217 |
+
query_unpad = bert_padding.index_first_axis(
|
218 |
+
rearrange(query, "b s ... -> (b s) ..."), indices_q
|
219 |
+
)
|
220 |
+
query_unpad = rearrange(query_unpad, "nnz (h d) -> nnz h d", h=n_heads)
|
221 |
+
key_unpad = bert_padding.index_first_axis(
|
222 |
+
rearrange(key, "b s ... -> (b s) ..."), indices_k
|
223 |
+
)
|
224 |
+
key_unpad = rearrange(key_unpad, "nnz (h d) -> nnz h d", h=kv_n_heads)
|
225 |
+
value_unpad = bert_padding.index_first_axis(
|
226 |
+
rearrange(value, "b s ... -> (b s) ..."), indices_v
|
227 |
+
)
|
228 |
+
value_unpad = rearrange(value_unpad, "nnz (h d) -> nnz h d", h=kv_n_heads)
|
229 |
+
if (
|
230 |
+
kv_n_heads < n_heads
|
231 |
+
and (not is_flash_v2_installed())
|
232 |
+
and (not should_repeat_kv_for_gqa)
|
233 |
+
):
|
234 |
+
raise ValueError(
|
235 |
+
"For Grouped Query Attention or Multi Query Attention, should_repeat_kv_for_gqa should be set to True if not using Flash Attention v2."
|
236 |
+
)
|
237 |
+
if should_repeat_kv_for_gqa:
|
238 |
+
if kv_n_heads == 1:
|
239 |
+
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
|
240 |
+
value_unpad = value_unpad.expand(
|
241 |
+
value_unpad.size(0), n_heads, value_unpad.size(-1)
|
242 |
+
)
|
243 |
+
elif kv_n_heads < n_heads:
|
244 |
+
key_unpad = repeat_kv_for_gqa(
|
245 |
+
key_unpad.view(1, key_unpad.size(0), kv_n_heads, -1),
|
246 |
+
n_heads // kv_n_heads,
|
247 |
+
).view(key_unpad.size(0), n_heads, -1)
|
248 |
+
value_unpad = repeat_kv_for_gqa(
|
249 |
+
value_unpad.view(1, value_unpad.size(0), kv_n_heads, -1),
|
250 |
+
n_heads // kv_n_heads,
|
251 |
+
).view(value_unpad.size(0), n_heads, -1)
|
252 |
dropout_p = dropout_p if training else 0.0
|
253 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
254 |
if is_flash_v1_installed():
|
255 |
+
output_unpad = flash_attn_interface.flash_attn_unpadded_func(
|
256 |
+
q=query_unpad,
|
257 |
+
k=key_unpad,
|
258 |
+
v=value_unpad,
|
259 |
+
cu_seqlens_q=cu_seqlens_q,
|
260 |
+
cu_seqlens_k=cu_seqlens_k,
|
261 |
+
max_seqlen_q=max_seqlen_q,
|
262 |
+
max_seqlen_k=max_seqlen_k,
|
263 |
+
dropout_p=dropout_p,
|
264 |
+
softmax_scale=softmax_scale,
|
265 |
+
causal=reset_is_causal,
|
266 |
+
return_attn_probs=needs_weights,
|
267 |
+
)
|
268 |
elif is_flash_v2_installed():
|
269 |
+
alibi_kwargs = {}
|
270 |
+
if check_alibi_support("flash"):
|
271 |
+
alibi_kwargs = {"alibi_slopes": alibi_slopes}
|
272 |
+
elif alibi_slopes is not None:
|
273 |
+
raise ValueError("alibi_slopes is only supported for flash-attn>=2.4.2")
|
274 |
+
output_unpad = flash_attn_interface.flash_attn_varlen_func(
|
275 |
+
q=query_unpad,
|
276 |
+
k=key_unpad,
|
277 |
+
v=value_unpad,
|
278 |
+
cu_seqlens_q=cu_seqlens_q,
|
279 |
+
cu_seqlens_k=cu_seqlens_k,
|
280 |
+
max_seqlen_q=max_seqlen_q,
|
281 |
+
max_seqlen_k=max_seqlen_k,
|
282 |
+
dropout_p=dropout_p,
|
283 |
+
softmax_scale=softmax_scale,
|
284 |
+
causal=reset_is_causal,
|
285 |
+
return_attn_probs=needs_weights,
|
286 |
+
window_size=(sliding_window_size, sliding_window_size),
|
287 |
+
**alibi_kwargs,
|
288 |
+
)
|
289 |
else:
|
290 |
+
raise RuntimeError("flash-attn==1.0.9 or flash-attn==2.4.2 is required.")
|
291 |
+
output = bert_padding.pad_input(
|
292 |
+
rearrange(output_unpad, "nnz h d -> nnz (h d)"), indices_q, batch_size, seqlen
|
293 |
+
)
|
294 |
return (output, None, past_key_value)
|
295 |
|
296 |
+
|
297 |
+
def triton_flash_attn_fn(
|
298 |
+
query: torch.Tensor,
|
299 |
+
key: torch.Tensor,
|
300 |
+
value: torch.Tensor,
|
301 |
+
n_heads: int,
|
302 |
+
kv_n_heads: int,
|
303 |
+
past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
|
304 |
+
softmax_scale: Optional[float] = None,
|
305 |
+
attn_bias: Optional[torch.Tensor] = None,
|
306 |
+
key_padding_mask: Optional[torch.Tensor] = None,
|
307 |
+
is_causal: bool = False,
|
308 |
+
dropout_p: float = 0.0,
|
309 |
+
training: bool = False,
|
310 |
+
needs_weights: bool = False,
|
311 |
+
) -> tuple[
|
312 |
+
torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]
|
313 |
+
]:
|
314 |
try:
|
315 |
from .flash_attn_triton import flash_attn_func
|
316 |
except:
|
317 |
_installed = False
|
318 |
+
if version.parse(torch.__version__) < version.parse("2.0.0"):
|
319 |
_installed = True
|
320 |
try:
|
321 |
from flash_attn.flash_attn_triton import flash_attn_func
|
322 |
except:
|
323 |
_installed = False
|
324 |
if not _installed:
|
325 |
+
raise RuntimeError(
|
326 |
+
"Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU "
|
327 |
+
+ "and `pip install .[gpu]` if installing from llm-foundry source or "
|
328 |
+
+ "`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` "
|
329 |
+
+ "if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). "
|
330 |
+
+ "Note: (1) requires you have CMake and PyTorch already installed."
|
331 |
+
)
|
332 |
check_valid_inputs(query, key, value)
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
if past_key_value is not None:
|
334 |
if len(past_key_value) != 0:
|
335 |
key = torch.cat([past_key_value[0], key], dim=1)
|
|
|
340 |
_s_k = max(0, attn_bias.size(3) - key.size(1))
|
341 |
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
342 |
if dropout_p:
|
343 |
+
raise NotImplementedError(f"Dropout not implemented for attn_impl: triton.")
|
344 |
dropout_p = dropout_p if training else 0.0
|
345 |
if needs_weights:
|
346 |
+
raise NotImplementedError(f"attn_impl: triton cannot return attn weights.")
|
347 |
if key_padding_mask is not None:
|
348 |
+
warnings.warn(
|
349 |
+
"Propagating key_padding_mask to the attention module "
|
350 |
+
+ "and applying it within the attention module can cause "
|
351 |
+
+ "unnecessary computation/memory usage. Consider integrating "
|
352 |
+
+ "into attn_bias once and passing that to each attention "
|
353 |
+
+ "module instead."
|
354 |
+
)
|
355 |
(b_size, s_k) = key_padding_mask.shape[:2]
|
356 |
if attn_bias is None:
|
357 |
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
|
358 |
+
attn_bias = attn_bias.masked_fill(
|
359 |
+
~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min
|
360 |
+
)
|
361 |
+
query = rearrange(query, "b s (h d) -> b s h d", h=n_heads)
|
362 |
+
key = rearrange(key, "b s (h d) -> b s h d", h=kv_n_heads)
|
363 |
+
value = rearrange(value, "b s (h d) -> b s h d", h=kv_n_heads)
|
364 |
if kv_n_heads == 1:
|
365 |
key = key.repeat(1, 1, n_heads, 1)
|
366 |
value = value.repeat(1, 1, n_heads, 1)
|
|
|
368 |
key = repeat_kv_for_gqa(key, n_heads // kv_n_heads)
|
369 |
value = repeat_kv_for_gqa(value, n_heads // kv_n_heads)
|
370 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
371 |
+
attn_output = flash_attn_func(
|
372 |
+
query, key, value, attn_bias, reset_is_causal, softmax_scale
|
373 |
+
)
|
374 |
output = attn_output.view(*attn_output.shape[:2], -1)
|
375 |
return (output, None, past_key_value)
|
376 |
|
377 |
+
|
378 |
class GroupedQueryAttention(nn.Module):
|
379 |
"""Grouped Query Attention (GQA) is a generalization of Multi-head (MHA).
|
380 |
|
|
|
385 |
implementation enables user to also use additive bias.
|
386 |
"""
|
387 |
|
388 |
+
def __init__(
|
389 |
+
self,
|
390 |
+
d_model: int,
|
391 |
+
n_heads: int,
|
392 |
+
kv_n_heads: int,
|
393 |
+
attn_impl: str = "triton",
|
394 |
+
clip_qkv: Optional[float] = None,
|
395 |
+
qk_ln: bool = False,
|
396 |
+
qk_gn: bool = False,
|
397 |
+
softmax_scale: Optional[float] = None,
|
398 |
+
attn_pdrop: float = 0.0,
|
399 |
+
norm_type: str = "low_precision_layernorm",
|
400 |
+
fc_type: str = "torch",
|
401 |
+
device: Optional[str] = None,
|
402 |
+
bias: bool = True,
|
403 |
+
sliding_window_size: int = -1,
|
404 |
+
):
|
405 |
super().__init__()
|
406 |
self.attn_impl = attn_impl
|
407 |
self.clip_qkv = clip_qkv
|
408 |
self.qk_ln = qk_ln
|
409 |
+
self.qk_gn = qk_gn
|
410 |
self.d_model = d_model
|
411 |
self.n_heads = n_heads
|
412 |
self.kv_n_heads = kv_n_heads
|
413 |
+
self.sliding_window_size = sliding_window_size
|
414 |
self.head_dim = d_model // n_heads
|
415 |
if self.kv_n_heads <= 0:
|
416 |
+
raise ValueError("kv_n_heads should be greater than zero.")
|
417 |
if self.kv_n_heads > self.n_heads:
|
418 |
+
raise ValueError(
|
419 |
+
"The number of KV heads should be less than or equal to Q heads."
|
420 |
+
)
|
421 |
if self.n_heads % self.kv_n_heads != 0:
|
422 |
+
raise ValueError(
|
423 |
+
"Each Q head should get the same number of KV heads, so n_heads must be divisible by kv_n_heads."
|
424 |
+
)
|
425 |
+
if qk_ln and qk_gn:
|
426 |
+
raise ValueError("Only one of qk_ln and qk_gn can be set to True.")
|
427 |
self.softmax_scale = softmax_scale
|
428 |
if self.softmax_scale is None:
|
429 |
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
|
430 |
self.attn_dropout_p = attn_pdrop
|
431 |
+
fc_kwargs: dict[str, Any] = {"bias": bias}
|
432 |
+
if fc_type != "te":
|
433 |
+
fc_kwargs["device"] = device
|
434 |
+
self.Wqkv = FC_CLASS_REGISTRY[fc_type](
|
435 |
+
self.d_model,
|
436 |
+
self.d_model + 2 * self.kv_n_heads * self.head_dim,
|
437 |
+
**fc_kwargs,
|
438 |
+
)
|
439 |
+
fuse_splits = [
|
440 |
+
i * self.head_dim for i in range(1, self.n_heads + 2 * self.kv_n_heads)
|
441 |
+
]
|
442 |
self.Wqkv._fused = (0, fuse_splits)
|
443 |
+
if self.qk_ln or self.qk_gn:
|
444 |
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
|
445 |
+
norm_size = self.head_dim if qk_gn else d_model
|
446 |
+
self.q_ln = norm_class(norm_size, device=device)
|
447 |
+
if qk_ln:
|
448 |
+
norm_size = self.head_dim * kv_n_heads
|
449 |
+
self.k_ln = norm_class(norm_size, device=device)
|
450 |
+
if self.attn_impl == "flash":
|
451 |
self.attn_fn = flash_attn_fn
|
452 |
+
elif self.attn_impl == "triton":
|
453 |
self.attn_fn = triton_flash_attn_fn
|
454 |
+
elif self.attn_impl == "torch":
|
455 |
self.attn_fn = scaled_multihead_dot_product_attention
|
456 |
else:
|
457 |
+
raise ValueError(f"attn_impl={attn_impl!r} is an invalid setting.")
|
458 |
+
self.out_proj = FC_CLASS_REGISTRY[fc_type](
|
459 |
+
self.d_model, self.d_model, **fc_kwargs
|
460 |
+
)
|
461 |
self.out_proj._is_residual = True
|
462 |
|
463 |
+
def forward(
|
464 |
+
self,
|
465 |
+
x: torch.Tensor,
|
466 |
+
past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
|
467 |
+
attn_bias: Optional[torch.Tensor] = None,
|
468 |
+
attention_mask: Optional[torch.Tensor] = None,
|
469 |
+
rotary_emb_w_meta_info: Optional[dict] = None,
|
470 |
+
is_causal: bool = True,
|
471 |
+
needs_weights: bool = False,
|
472 |
+
alibi_slopes: Optional[torch.Tensor] = None,
|
473 |
+
flash_attn_padding_info: Optional[dict[str, torch.Tensor]] = None,
|
474 |
+
) -> tuple[
|
475 |
+
torch.Tensor,
|
476 |
+
Optional[torch.Tensor],
|
477 |
+
Optional[tuple[torch.Tensor, torch.Tensor]],
|
478 |
+
]:
|
479 |
qkv = self.Wqkv(x)
|
480 |
if self.clip_qkv:
|
481 |
qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv)
|
482 |
+
(query, key, value) = qkv.split(
|
483 |
+
[
|
484 |
+
self.d_model,
|
485 |
+
self.kv_n_heads * self.head_dim,
|
486 |
+
self.kv_n_heads * self.head_dim,
|
487 |
+
],
|
488 |
+
dim=2,
|
489 |
+
)
|
490 |
key_padding_mask = attention_mask
|
491 |
+
if self.qk_ln or self.qk_gn:
|
492 |
+
(q_shape, k_shape) = (query.shape, key.shape)
|
493 |
+
if self.qk_gn:
|
494 |
+
(b, s) = query.shape[:2]
|
495 |
+
query = query.view(b, s, self.n_heads, -1)
|
496 |
+
key = key.view(b, s, self.kv_n_heads, -1)
|
497 |
dtype = query.dtype
|
498 |
+
query = self.q_ln(query).to(dtype).view(q_shape)
|
499 |
+
key = self.k_ln(key).to(dtype).view(k_shape)
|
500 |
+
if rotary_emb_w_meta_info is not None:
|
501 |
+
rotary_emb = rotary_emb_w_meta_info["rotary_emb"]
|
502 |
+
seq_len = rotary_emb_w_meta_info["seq_len"]
|
503 |
+
offset_info = rotary_emb_w_meta_info["offset_info"]
|
504 |
+
(bsz, seqlen) = query.shape[:2]
|
505 |
+
query = query.view(bsz, seqlen, -1, self.head_dim)
|
506 |
+
key = key.view(bsz, seqlen, -1, self.head_dim)
|
507 |
+
if rotary_emb_w_meta_info["impl"] == "dail":
|
508 |
+
value = value.view(bsz, seqlen, -1, self.head_dim)
|
509 |
+
kv = torch.stack([key, value], dim=2)
|
510 |
+
(query, kv) = rotary_emb(
|
511 |
+
query, kv, seqlen_offset=offset_info, max_seqlen=seq_len
|
512 |
+
)
|
513 |
+
[key, value] = torch.unbind(kv, dim=2)
|
514 |
+
value = value.view(bsz, seqlen, self.kv_n_heads * self.head_dim)
|
515 |
+
elif rotary_emb_w_meta_info["impl"] == "hf":
|
516 |
+
(cos, sin) = rotary_emb(value, seq_len)
|
517 |
+
if is_transformers_version_gte("4.36"):
|
518 |
+
(query, key) = apply_rotary_pos_emb(
|
519 |
+
query, key, cos, sin, offset_info, unsqueeze_dim=2
|
520 |
+
)
|
521 |
+
else:
|
522 |
+
query = query.transpose(1, 2)
|
523 |
+
key = key.transpose(1, 2)
|
524 |
+
(query, key) = apply_rotary_pos_emb(
|
525 |
+
query, key, cos, sin, offset_info
|
526 |
+
)
|
527 |
+
query = query.transpose(1, 2)
|
528 |
+
key = key.transpose(1, 2)
|
529 |
+
query = query.view(bsz, seqlen, self.d_model)
|
530 |
+
key = key.view(bsz, seqlen, self.kv_n_heads * self.head_dim)
|
531 |
+
extra_attn_kwargs = {}
|
532 |
+
if self.attn_impl == "flash":
|
533 |
+
key_padding_mask = None
|
534 |
+
extra_attn_kwargs = {
|
535 |
+
"should_repeat_kv_for_gqa": not is_flash_v2_installed(),
|
536 |
+
"sliding_window_size": self.sliding_window_size,
|
537 |
+
"alibi_slopes": alibi_slopes,
|
538 |
+
"flash_attn_padding_info": flash_attn_padding_info,
|
539 |
+
}
|
540 |
+
(context, attn_weights, past_key_value) = self.attn_fn(
|
541 |
+
query,
|
542 |
+
key,
|
543 |
+
value,
|
544 |
+
self.n_heads,
|
545 |
+
self.kv_n_heads,
|
546 |
+
past_key_value=past_key_value,
|
547 |
+
softmax_scale=self.softmax_scale,
|
548 |
+
attn_bias=attn_bias,
|
549 |
+
key_padding_mask=key_padding_mask,
|
550 |
+
is_causal=is_causal,
|
551 |
+
dropout_p=self.attn_dropout_p,
|
552 |
+
training=self.training,
|
553 |
+
needs_weights=needs_weights,
|
554 |
+
**extra_attn_kwargs,
|
555 |
+
)
|
556 |
return (self.out_proj(context), attn_weights, past_key_value)
|
557 |
|
558 |
+
|
559 |
class MultiheadAttention(GroupedQueryAttention):
|
560 |
"""Multi-head self attention.
|
561 |
|
|
|
563 |
additive bias.
|
564 |
"""
|
565 |
|
566 |
+
def __init__(
|
567 |
+
self,
|
568 |
+
d_model: int,
|
569 |
+
n_heads: int,
|
570 |
+
attn_impl: str = "triton",
|
571 |
+
clip_qkv: Optional[float] = None,
|
572 |
+
qk_ln: bool = False,
|
573 |
+
qk_gn: bool = False,
|
574 |
+
softmax_scale: Optional[float] = None,
|
575 |
+
attn_pdrop: float = 0.0,
|
576 |
+
norm_type: str = "low_precision_layernorm",
|
577 |
+
fc_type: str = "torch",
|
578 |
+
device: Optional[str] = None,
|
579 |
+
bias: bool = True,
|
580 |
+
sliding_window_size: int = -1,
|
581 |
+
):
|
582 |
+
super().__init__(
|
583 |
+
d_model=d_model,
|
584 |
+
n_heads=n_heads,
|
585 |
+
kv_n_heads=n_heads,
|
586 |
+
attn_impl=attn_impl,
|
587 |
+
clip_qkv=clip_qkv,
|
588 |
+
qk_ln=qk_ln,
|
589 |
+
qk_gn=qk_gn,
|
590 |
+
softmax_scale=softmax_scale,
|
591 |
+
attn_pdrop=attn_pdrop,
|
592 |
+
norm_type=norm_type,
|
593 |
+
fc_type=fc_type,
|
594 |
+
device=device,
|
595 |
+
bias=bias,
|
596 |
+
sliding_window_size=sliding_window_size,
|
597 |
+
)
|
598 |
+
|
599 |
|
600 |
class MultiQueryAttention(GroupedQueryAttention):
|
601 |
"""Multi-Query self attention.
|
|
|
604 |
additive bias.
|
605 |
"""
|
606 |
|
607 |
+
def __init__(
|
608 |
+
self,
|
609 |
+
d_model: int,
|
610 |
+
n_heads: int,
|
611 |
+
attn_impl: str = "triton",
|
612 |
+
clip_qkv: Optional[float] = None,
|
613 |
+
qk_ln: bool = False,
|
614 |
+
qk_gn: bool = False,
|
615 |
+
softmax_scale: Optional[float] = None,
|
616 |
+
attn_pdrop: float = 0.0,
|
617 |
+
norm_type: str = "low_precision_layernorm",
|
618 |
+
fc_type: str = "torch",
|
619 |
+
device: Optional[str] = None,
|
620 |
+
bias: bool = True,
|
621 |
+
sliding_window_size: int = -1,
|
622 |
+
):
|
623 |
+
super().__init__(
|
624 |
+
d_model=d_model,
|
625 |
+
n_heads=n_heads,
|
626 |
+
kv_n_heads=1,
|
627 |
+
attn_impl=attn_impl,
|
628 |
+
clip_qkv=clip_qkv,
|
629 |
+
qk_ln=qk_ln,
|
630 |
+
qk_gn=qk_gn,
|
631 |
+
softmax_scale=softmax_scale,
|
632 |
+
attn_pdrop=attn_pdrop,
|
633 |
+
norm_type=norm_type,
|
634 |
+
fc_type=fc_type,
|
635 |
+
device=device,
|
636 |
+
bias=bias,
|
637 |
+
sliding_window_size=sliding_window_size,
|
638 |
+
)
|
639 |
|
640 |
+
|
641 |
+
def attn_bias_shape(
|
642 |
+
attn_impl: str,
|
643 |
+
n_heads: int,
|
644 |
+
seq_len: int,
|
645 |
+
alibi: bool,
|
646 |
+
prefix_lm: bool,
|
647 |
+
causal: bool,
|
648 |
+
use_sequence_id: bool,
|
649 |
+
) -> Optional[tuple[int, int, int, int]]:
|
650 |
+
if attn_impl == "flash":
|
651 |
return None
|
652 |
+
elif attn_impl in ["torch", "triton"]:
|
653 |
if alibi:
|
654 |
if (prefix_lm or not causal) or use_sequence_id:
|
655 |
return (1, n_heads, seq_len, seq_len)
|
|
|
658 |
return (1, 1, seq_len, seq_len)
|
659 |
return None
|
660 |
else:
|
661 |
+
raise ValueError(f"attn_impl={attn_impl!r} is an invalid setting.")
|
662 |
+
|
663 |
|
664 |
+
def build_attn_bias(
|
665 |
+
attn_impl: str,
|
666 |
+
attn_bias: torch.Tensor,
|
667 |
+
n_heads: int,
|
668 |
+
seq_len: int,
|
669 |
+
causal: bool = False,
|
670 |
+
alibi: bool = False,
|
671 |
+
alibi_bias_max: int = 8,
|
672 |
+
) -> Optional[torch.Tensor]:
|
673 |
+
if attn_impl == "flash":
|
674 |
return None
|
675 |
+
elif attn_impl in ["torch", "triton"]:
|
676 |
if alibi:
|
677 |
(device, dtype) = (attn_bias.device, attn_bias.dtype)
|
678 |
+
attn_bias = attn_bias.add(
|
679 |
+
build_alibi_bias(
|
680 |
+
n_heads,
|
681 |
+
seq_len,
|
682 |
+
full=not causal,
|
683 |
+
alibi_bias_max=alibi_bias_max,
|
684 |
+
device=device,
|
685 |
+
dtype=dtype,
|
686 |
+
)
|
687 |
+
)
|
688 |
return attn_bias
|
689 |
else:
|
690 |
+
raise ValueError(f"attn_impl={attn_impl!r} is an invalid setting.")
|
691 |
|
692 |
+
|
693 |
+
def gen_slopes(
|
694 |
+
n_heads: int,
|
695 |
+
alibi_bias_max: int = 8,
|
696 |
+
device: Optional[torch.device] = None,
|
697 |
+
return_1d: bool = False,
|
698 |
+
) -> torch.Tensor:
|
699 |
_n_heads = 2 ** math.ceil(math.log2(n_heads))
|
700 |
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
|
701 |
m = m.mul(alibi_bias_max / _n_heads)
|
702 |
slopes = 1.0 / torch.pow(2, m)
|
703 |
if _n_heads != n_heads:
|
704 |
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
|
705 |
+
if return_1d:
|
706 |
+
return slopes
|
707 |
return slopes.view(1, n_heads, 1, 1)
|
708 |
|
709 |
+
|
710 |
+
def build_alibi_bias(
|
711 |
+
n_heads: int,
|
712 |
+
seq_len: int,
|
713 |
+
full: bool = False,
|
714 |
+
alibi_bias_max: int = 8,
|
715 |
+
device: Optional[torch.device] = None,
|
716 |
+
dtype: Optional[torch.dtype] = None,
|
717 |
+
) -> torch.Tensor:
|
718 |
+
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(
|
719 |
+
1, 1, 1, seq_len
|
720 |
+
)
|
721 |
if full:
|
722 |
+
alibi_bias = alibi_bias - torch.arange(
|
723 |
+
1 - seq_len, 1, dtype=torch.int32, device=device
|
724 |
+
).view(1, 1, seq_len, 1)
|
725 |
alibi_bias = alibi_bias.abs().mul(-1)
|
726 |
slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
|
727 |
alibi_bias = alibi_bias * slopes
|
728 |
return alibi_bias.to(dtype=dtype)
|
729 |
+
|
730 |
+
|
731 |
+
ATTN_CLASS_REGISTRY = {
|
732 |
+
"multihead_attention": MultiheadAttention,
|
733 |
+
"multiquery_attention": MultiQueryAttention,
|
734 |
+
"grouped_query_attention": GroupedQueryAttention,
|
735 |
+
}
|
blocks.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
"""GPT Blocks used for the GPT Model."""
|
|
|
2 |
from typing import Any, Dict, Optional, Tuple
|
3 |
import torch
|
4 |
import torch.nn as nn
|
@@ -6,8 +7,37 @@ from .attention import ATTN_CLASS_REGISTRY
|
|
6 |
from .ffn import FFN_CLASS_REGISTRY, build_ffn
|
7 |
from .norm import NORM_CLASS_REGISTRY
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
class MPTBlock(nn.Module):
|
|
|
11 |
def __init__(
|
12 |
self,
|
13 |
d_model: int,
|
@@ -20,21 +50,11 @@ class MPTBlock(nn.Module):
|
|
20 |
fc_type: str = "torch",
|
21 |
device: Optional[str] = None,
|
22 |
no_bias: bool = False,
|
|
|
23 |
**kwargs: Any
|
24 |
):
|
25 |
if attn_config is None:
|
26 |
-
attn_config =
|
27 |
-
"attn_type": "multihead_attention",
|
28 |
-
"attn_pdrop": 0.0,
|
29 |
-
"attn_impl": "triton",
|
30 |
-
"qk_ln": False,
|
31 |
-
"clip_qkv": None,
|
32 |
-
"softmax_scale": None,
|
33 |
-
"prefix_lm": False,
|
34 |
-
"attn_uses_sequence_id": False,
|
35 |
-
"alibi": False,
|
36 |
-
"alibi_bias_max": 8,
|
37 |
-
}
|
38 |
if ffn_config is None:
|
39 |
ffn_config = {"ffn_type": "mptmlp"}
|
40 |
del kwargs
|
@@ -48,6 +68,11 @@ class MPTBlock(nn.Module):
|
|
48 |
"alibi",
|
49 |
"attn_uses_sequence_id",
|
50 |
"alibi_bias_max",
|
|
|
|
|
|
|
|
|
|
|
51 |
}
|
52 |
attn_config_subset_for_attn_class = {
|
53 |
k: v
|
@@ -75,15 +100,19 @@ class MPTBlock(nn.Module):
|
|
75 |
)
|
76 |
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
|
77 |
self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
|
|
|
78 |
|
79 |
def forward(
|
80 |
self,
|
81 |
x: torch.Tensor,
|
82 |
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
83 |
attn_bias: Optional[torch.Tensor] = None,
|
|
|
84 |
attention_mask: Optional[torch.ByteTensor] = None,
|
85 |
is_causal: bool = True,
|
86 |
output_attentions: bool = False,
|
|
|
|
|
87 |
) -> Tuple[
|
88 |
torch.Tensor,
|
89 |
Optional[torch.Tensor],
|
@@ -94,14 +123,25 @@ class MPTBlock(nn.Module):
|
|
94 |
a,
|
95 |
past_key_value=past_key_value,
|
96 |
attn_bias=attn_bias,
|
|
|
97 |
attention_mask=attention_mask,
|
98 |
is_causal=is_causal,
|
99 |
needs_weights=output_attentions,
|
|
|
|
|
100 |
)
|
101 |
x = x + self.resid_attn_dropout(b)
|
102 |
m = x
|
103 |
if self.norm_2 is not None:
|
104 |
m = self.norm_2(x)
|
|
|
|
|
|
|
|
|
|
|
105 |
n = self.ffn(m)
|
|
|
|
|
|
|
106 |
x = x + self.resid_ffn_dropout(n)
|
107 |
return (x, attn_weights, past_key_value)
|
|
|
1 |
"""GPT Blocks used for the GPT Model."""
|
2 |
+
|
3 |
from typing import Any, Dict, Optional, Tuple
|
4 |
import torch
|
5 |
import torch.nn as nn
|
|
|
7 |
from .ffn import FFN_CLASS_REGISTRY, build_ffn
|
8 |
from .norm import NORM_CLASS_REGISTRY
|
9 |
|
10 |
+
try:
|
11 |
+
from flash_attn.bert_padding import unpad_input, pad_input
|
12 |
+
except:
|
13 |
+
(unpad_input, pad_input) = (None, None)
|
14 |
+
attn_config_defaults: Dict = {
|
15 |
+
"attn_type": "multihead_attention",
|
16 |
+
"attn_pdrop": 0.0,
|
17 |
+
"attn_impl": "flash",
|
18 |
+
"qk_ln": True,
|
19 |
+
"qk_gn": False,
|
20 |
+
"clip_qkv": None,
|
21 |
+
"softmax_scale": None,
|
22 |
+
"prefix_lm": False,
|
23 |
+
"attn_uses_sequence_id": False,
|
24 |
+
"sliding_window_size": -1,
|
25 |
+
"alibi": False,
|
26 |
+
"alibi_bias_max": 8,
|
27 |
+
"rope": False,
|
28 |
+
"rope_theta": 10000,
|
29 |
+
"rope_impl": "dail",
|
30 |
+
"rope_dail_config": {
|
31 |
+
"type": "original",
|
32 |
+
"pos_idx_in_fp32": True,
|
33 |
+
"xpos_scale_base": 512,
|
34 |
+
},
|
35 |
+
"rope_hf_config": {"type": "no_scaling", "factor": 1.0},
|
36 |
+
}
|
37 |
+
|
38 |
|
39 |
class MPTBlock(nn.Module):
|
40 |
+
|
41 |
def __init__(
|
42 |
self,
|
43 |
d_model: int,
|
|
|
50 |
fc_type: str = "torch",
|
51 |
device: Optional[str] = None,
|
52 |
no_bias: bool = False,
|
53 |
+
use_pad_tok_in_ffn: bool = True,
|
54 |
**kwargs: Any
|
55 |
):
|
56 |
if attn_config is None:
|
57 |
+
attn_config = attn_config_defaults
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
if ffn_config is None:
|
59 |
ffn_config = {"ffn_type": "mptmlp"}
|
60 |
del kwargs
|
|
|
68 |
"alibi",
|
69 |
"attn_uses_sequence_id",
|
70 |
"alibi_bias_max",
|
71 |
+
"rope",
|
72 |
+
"rope_theta",
|
73 |
+
"rope_impl",
|
74 |
+
"rope_dail_config",
|
75 |
+
"rope_hf_config",
|
76 |
}
|
77 |
attn_config_subset_for_attn_class = {
|
78 |
k: v
|
|
|
100 |
)
|
101 |
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
|
102 |
self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
|
103 |
+
self.use_pad_tok_in_ffn = use_pad_tok_in_ffn
|
104 |
|
105 |
def forward(
|
106 |
self,
|
107 |
x: torch.Tensor,
|
108 |
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
109 |
attn_bias: Optional[torch.Tensor] = None,
|
110 |
+
rotary_emb_w_meta_info: Optional[Dict] = None,
|
111 |
attention_mask: Optional[torch.ByteTensor] = None,
|
112 |
is_causal: bool = True,
|
113 |
output_attentions: bool = False,
|
114 |
+
alibi_slopes: Optional[torch.Tensor] = None,
|
115 |
+
flash_attn_padding_info: Optional[dict[str, torch.Tensor]] = None,
|
116 |
) -> Tuple[
|
117 |
torch.Tensor,
|
118 |
Optional[torch.Tensor],
|
|
|
123 |
a,
|
124 |
past_key_value=past_key_value,
|
125 |
attn_bias=attn_bias,
|
126 |
+
rotary_emb_w_meta_info=rotary_emb_w_meta_info,
|
127 |
attention_mask=attention_mask,
|
128 |
is_causal=is_causal,
|
129 |
needs_weights=output_attentions,
|
130 |
+
alibi_slopes=alibi_slopes,
|
131 |
+
flash_attn_padding_info=flash_attn_padding_info,
|
132 |
)
|
133 |
x = x + self.resid_attn_dropout(b)
|
134 |
m = x
|
135 |
if self.norm_2 is not None:
|
136 |
m = self.norm_2(x)
|
137 |
+
(batch_size, seq_len) = m.size()[:2]
|
138 |
+
indices = None
|
139 |
+
if not self.use_pad_tok_in_ffn:
|
140 |
+
assert unpad_input is not None
|
141 |
+
(m, indices, _, _) = unpad_input(m, attention_mask)
|
142 |
n = self.ffn(m)
|
143 |
+
if not self.use_pad_tok_in_ffn:
|
144 |
+
assert pad_input is not None
|
145 |
+
n = pad_input(n, indices, batch_size, seq_len)
|
146 |
x = x + self.resid_ffn_dropout(n)
|
147 |
return (x, attn_weights, past_key_value)
|
config.json
CHANGED
@@ -12,7 +12,21 @@
|
|
12 |
"attn_uses_sequence_id": false,
|
13 |
"clip_qkv": null,
|
14 |
"prefix_lm": false,
|
|
|
15 |
"qk_ln": true,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
"softmax_scale": null
|
17 |
},
|
18 |
"auto_map": {
|
@@ -55,5 +69,6 @@
|
|
55 |
"torch_dtype": "bfloat16",
|
56 |
"transformers_version": "4.37.2",
|
57 |
"use_cache": false,
|
|
|
58 |
"vocab_size": 256000
|
59 |
}
|
|
|
12 |
"attn_uses_sequence_id": false,
|
13 |
"clip_qkv": null,
|
14 |
"prefix_lm": false,
|
15 |
+
"qk_gn": false,
|
16 |
"qk_ln": true,
|
17 |
+
"rope": false,
|
18 |
+
"rope_dail_config": {
|
19 |
+
"pos_idx_in_fp32": true,
|
20 |
+
"type": "original",
|
21 |
+
"xpos_scale_base": 512
|
22 |
+
},
|
23 |
+
"rope_hf_config": {
|
24 |
+
"factor": 1.0,
|
25 |
+
"type": "no_scaling"
|
26 |
+
},
|
27 |
+
"rope_impl": "dail",
|
28 |
+
"rope_theta": 10000,
|
29 |
+
"sliding_window_size": -1,
|
30 |
"softmax_scale": null
|
31 |
},
|
32 |
"auto_map": {
|
|
|
69 |
"torch_dtype": "bfloat16",
|
70 |
"transformers_version": "4.37.2",
|
71 |
"use_cache": false,
|
72 |
+
"use_pad_tok_in_ffn": true,
|
73 |
"vocab_size": 256000
|
74 |
}
|
configuration_mpt.py
CHANGED
@@ -1,22 +1,63 @@
|
|
1 |
"""A HuggingFace-style model configuration."""
|
|
|
2 |
import warnings
|
3 |
from typing import Any, Dict, Optional, Union
|
4 |
from transformers import PretrainedConfig
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
class MPTConfig(PretrainedConfig):
|
10 |
-
model_type =
|
11 |
|
12 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
"""The MPT configuration class.
|
14 |
|
15 |
Args:
|
16 |
d_model (int): The size of the embedding dimension of the model.
|
17 |
n_heads (int): The number of attention heads.
|
18 |
n_layers (int): The number of layers in the model.
|
19 |
-
expansion_ratio (int): The ratio of the up/down scale in the ffn.
|
20 |
max_seq_len (int): The maximum sequence length of the model.
|
21 |
vocab_size (int): The size of the vocabulary.
|
22 |
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
|
@@ -27,6 +68,7 @@ class MPTConfig(PretrainedConfig):
|
|
27 |
attn_pdrop (float): The dropout probability for the attention layers.
|
28 |
attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
|
29 |
qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
|
|
|
30 |
clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
|
31 |
this value.
|
32 |
softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
|
@@ -38,15 +80,25 @@ class MPTConfig(PretrainedConfig):
|
|
38 |
When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
|
39 |
which sub-sequence each token belongs to.
|
40 |
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
|
|
|
41 |
alibi (bool): Whether to use the alibi bias instead of position embeddings.
|
42 |
alibi_bias_max (int): The maximum value of the alibi bias.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
|
44 |
ffn_config (Dict): A dictionary used to configure the model's ffn module:
|
45 |
-
ffn_type (str): type of ffn to use. Options: mptmlp, te_ln_mlp
|
46 |
init_device (str): The device to use for parameter initialization.
|
47 |
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
|
48 |
no_bias (bool): Whether to use bias in all layers.
|
49 |
-
verbose (int): The verbosity level. 0 is silent.
|
50 |
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
|
51 |
norm_type (str): choose type of norm to use
|
52 |
use_cache (bool): Whether or not the model should return the last key/values attentions
|
@@ -66,6 +118,8 @@ class MPTConfig(PretrainedConfig):
|
|
66 |
---
|
67 |
See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
|
68 |
fc_type (str): choose fc layer implementation. Options: torch and te. te layers support fp8 when using H100 GPUs.
|
|
|
|
|
69 |
"""
|
70 |
self.d_model = d_model
|
71 |
self.n_heads = n_heads
|
@@ -86,55 +140,183 @@ class MPTConfig(PretrainedConfig):
|
|
86 |
self.use_cache = use_cache
|
87 |
self.init_config = init_config
|
88 |
self.fc_type = fc_type
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
if self.attn_config.get('alibi', False):
|
96 |
self.learned_pos_emb = False
|
97 |
-
warnings.warn(
|
98 |
-
|
|
|
|
|
99 |
self._validate_config()
|
100 |
|
101 |
-
def _set_config_defaults(
|
102 |
-
|
|
|
|
|
103 |
if k not in config:
|
104 |
config[k] = v
|
|
|
|
|
|
|
|
|
105 |
return config
|
106 |
|
107 |
def _validate_config(self) -> None:
|
108 |
-
self.attn_config = self._set_config_defaults(
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
if self.d_model % self.n_heads != 0:
|
112 |
-
raise ValueError(
|
113 |
-
if any(
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
|
117 |
-
if self.attn_config[
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
|
124 |
-
raise ValueError(
|
125 |
-
|
126 |
-
|
127 |
-
if self.
|
128 |
-
raise ValueError(
|
129 |
-
|
130 |
-
|
131 |
-
if self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
try:
|
133 |
import transformer_engine.pytorch as te
|
|
|
134 |
del te
|
135 |
except:
|
136 |
-
raise ImportError(
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""A HuggingFace-style model configuration."""
|
2 |
+
|
3 |
import warnings
|
4 |
from typing import Any, Dict, Optional, Union
|
5 |
from transformers import PretrainedConfig
|
6 |
+
from .attention import check_alibi_support, is_flash_v1_installed, is_flash_v2_installed
|
7 |
+
from .blocks import attn_config_defaults
|
8 |
+
from .fc import FC_CLASS_REGISTRY
|
9 |
+
from .norm import LPLayerNorm
|
10 |
+
from .ffn import FFN_CLASS_REGISTRY
|
11 |
+
from .warnings import VersionedDeprecationWarning
|
12 |
+
|
13 |
+
ffn_config_defaults: Dict = {"ffn_type": "mptmlp"}
|
14 |
+
init_config_defaults: Dict = {
|
15 |
+
"name": "kaiming_normal_",
|
16 |
+
"fan_mode": "fan_in",
|
17 |
+
"init_nonlinearity": "relu",
|
18 |
+
"init_div_is_residual": True,
|
19 |
+
"emb_init_std": None,
|
20 |
+
"emb_init_uniform_lim": None,
|
21 |
+
"init_std": None,
|
22 |
+
"init_gain": 0.0,
|
23 |
+
}
|
24 |
+
|
25 |
|
26 |
class MPTConfig(PretrainedConfig):
|
27 |
+
model_type = "mpt"
|
28 |
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
d_model: int = 2048,
|
32 |
+
n_heads: int = 16,
|
33 |
+
n_layers: int = 24,
|
34 |
+
expansion_ratio: Union[int, float] = 4,
|
35 |
+
max_seq_len: int = 2048,
|
36 |
+
vocab_size: int = 50368,
|
37 |
+
resid_pdrop: float = 0.0,
|
38 |
+
emb_pdrop: float = 0.0,
|
39 |
+
learned_pos_emb: bool = True,
|
40 |
+
attn_config: Dict = attn_config_defaults,
|
41 |
+
ffn_config: Dict = ffn_config_defaults,
|
42 |
+
init_device: str = "cpu",
|
43 |
+
logit_scale: Optional[Union[float, str]] = None,
|
44 |
+
no_bias: bool = False,
|
45 |
+
embedding_fraction: float = 1.0,
|
46 |
+
norm_type: str = "low_precision_layernorm",
|
47 |
+
use_cache: bool = False,
|
48 |
+
init_config: Dict = init_config_defaults,
|
49 |
+
fc_type: str = "torch",
|
50 |
+
tie_word_embeddings: bool = True,
|
51 |
+
use_pad_tok_in_ffn: bool = True,
|
52 |
+
**kwargs: Any,
|
53 |
+
):
|
54 |
"""The MPT configuration class.
|
55 |
|
56 |
Args:
|
57 |
d_model (int): The size of the embedding dimension of the model.
|
58 |
n_heads (int): The number of attention heads.
|
59 |
n_layers (int): The number of layers in the model.
|
60 |
+
expansion_ratio (Union[int, float]): The ratio of the up/down scale in the ffn.
|
61 |
max_seq_len (int): The maximum sequence length of the model.
|
62 |
vocab_size (int): The size of the vocabulary.
|
63 |
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
|
|
|
68 |
attn_pdrop (float): The dropout probability for the attention layers.
|
69 |
attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
|
70 |
qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
|
71 |
+
qk_gn (bool): Whether to apply group normalization to the queries and keys in the attention layer.
|
72 |
clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
|
73 |
this value.
|
74 |
softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
|
|
|
80 |
When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
|
81 |
which sub-sequence each token belongs to.
|
82 |
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
|
83 |
+
sliding_window_size (int): Window size for sliding window local attention. Defaults to -1, which means no sliding window. Query at position i will only attend to keys between [i + seqlen_k - seqlen_q - window_size, i + seqlen_k - seqlen_q + window_size] inclusive. Only works for flash attention v2.3.0 or higher.
|
84 |
alibi (bool): Whether to use the alibi bias instead of position embeddings.
|
85 |
alibi_bias_max (int): The maximum value of the alibi bias.
|
86 |
+
rope (bool): Whether to use rotary positional embeddings.
|
87 |
+
rope_theta (int): The base frequency for rope.
|
88 |
+
rope_impl (str): The implementation of rope to use. One of 'hf' (to use the implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py) or 'dail' (to use the implementation from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py).
|
89 |
+
rope_dail_config (Dict): The configuration for the dail implementation of rope.
|
90 |
+
type (str): The type of rotary position embedding to use. Options: 'original' (for https://arxiv.org/pdf/2104.09864.pdf), 'xpos' (for https://arxiv.org/pdf/2212.10554.pdf).
|
91 |
+
pos_idx_in_fp32 (bool): If True, the position indices [0, ..., seqlen - 1] are in fp32, otherwise they might be in lower precision. A consequence could be, for example, that bf16 rounds position 1995 to 2000, which leads to them having the same positional embedding.
|
92 |
+
xpos_scale_base (float): The scale base for XPos (if using XPos).
|
93 |
+
rope_hf_config (Dict): A dictionary used to configure rope's scaling behavior (when scaling beyond the training length).
|
94 |
+
type (str): Can be one of 'no_scaling', 'linear', or 'dynamic'. 'no_scaling' uses the default implementation for rotary embeddings, 'linear' uses linear scaling as proposed by the Reddit user /u/kaiokendev, and 'dynamic' uses Dynamic NTK scaling as proposed by the Reddit users /u/bloc97 and /u/emozilla.
|
95 |
+
factor (float): Scaling factor to use if using 'linear' or 'dynamic' as rope_scaling.type.
|
96 |
kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
|
97 |
ffn_config (Dict): A dictionary used to configure the model's ffn module:
|
98 |
+
ffn_type (str): type of ffn to use. Options: mptmlp, mptglu, te_ln_mlp
|
99 |
init_device (str): The device to use for parameter initialization.
|
100 |
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
|
101 |
no_bias (bool): Whether to use bias in all layers.
|
|
|
102 |
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
|
103 |
norm_type (str): choose type of norm to use
|
104 |
use_cache (bool): Whether or not the model should return the last key/values attentions
|
|
|
118 |
---
|
119 |
See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
|
120 |
fc_type (str): choose fc layer implementation. Options: torch and te. te layers support fp8 when using H100 GPUs.
|
121 |
+
tie_word_embeddings (bool): Whether to tie the input embedding and output layers.
|
122 |
+
use_pad_tok_in_ffn (bool): Whether to forward the pad token in the feedforward networks.
|
123 |
"""
|
124 |
self.d_model = d_model
|
125 |
self.n_heads = n_heads
|
|
|
140 |
self.use_cache = use_cache
|
141 |
self.init_config = init_config
|
142 |
self.fc_type = fc_type
|
143 |
+
self.use_pad_tok_in_ffn = use_pad_tok_in_ffn
|
144 |
+
if "name" in kwargs:
|
145 |
+
del kwargs["name"]
|
146 |
+
if "loss_fn" in kwargs:
|
147 |
+
del kwargs["loss_fn"]
|
148 |
+
if self.attn_config.get("alibi", False) or self.attn_config.get("rope", False):
|
|
|
149 |
self.learned_pos_emb = False
|
150 |
+
warnings.warn(
|
151 |
+
f"alibi or rope is turned on, setting `learned_pos_emb` to `False.`"
|
152 |
+
)
|
153 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
154 |
self._validate_config()
|
155 |
|
156 |
+
def _set_config_defaults(
|
157 |
+
self, config: Dict[str, Any], config_defaults: Dict[str, Any]
|
158 |
+
) -> Dict[str, Any]:
|
159 |
+
for k, v in config_defaults.items():
|
160 |
if k not in config:
|
161 |
config[k] = v
|
162 |
+
elif isinstance(v, dict):
|
163 |
+
config[k] = self._set_config_defaults(
|
164 |
+
config[k] if config[k] is not None else {}, v
|
165 |
+
)
|
166 |
return config
|
167 |
|
168 |
def _validate_config(self) -> None:
|
169 |
+
self.attn_config = self._set_config_defaults(
|
170 |
+
self.attn_config, attn_config_defaults
|
171 |
+
)
|
172 |
+
self.ffn_config = self._set_config_defaults(
|
173 |
+
self.ffn_config, ffn_config_defaults
|
174 |
+
)
|
175 |
+
self.init_config = self._set_config_defaults(
|
176 |
+
self.init_config, init_config_defaults
|
177 |
+
)
|
178 |
if self.d_model % self.n_heads != 0:
|
179 |
+
raise ValueError("d_model must be divisible by n_heads")
|
180 |
+
if any(
|
181 |
+
(
|
182 |
+
prob < 0 or prob > 1
|
183 |
+
for prob in [
|
184 |
+
self.attn_config["attn_pdrop"],
|
185 |
+
self.resid_pdrop,
|
186 |
+
self.emb_pdrop,
|
187 |
+
]
|
188 |
+
)
|
189 |
+
):
|
190 |
+
raise ValueError(
|
191 |
+
"self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1"
|
192 |
+
)
|
193 |
+
if self.attn_config["attn_impl"] not in ["torch", "flash", "triton"]:
|
194 |
raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
|
195 |
+
if self.attn_config["prefix_lm"] and self.attn_config["attn_impl"] not in [
|
196 |
+
"torch",
|
197 |
+
"triton",
|
198 |
+
]:
|
199 |
+
raise NotImplementedError(
|
200 |
+
"prefix_lm only implemented with torch and triton attention."
|
201 |
+
)
|
202 |
+
if self.attn_config["attn_impl"] == "flash" and is_flash_v1_installed():
|
203 |
+
warnings.warn(
|
204 |
+
VersionedDeprecationWarning(
|
205 |
+
'Support for Flash Attention v1 is deprecated. Please upgrade to Flash Attention v2.4.2. To install Flash Attention v2.4.2, please run `pip install -e ".[gpu-flash2]"` from the root directory of the llm-foundry repository.',
|
206 |
+
remove_version="0.6.0",
|
207 |
+
)
|
208 |
+
)
|
209 |
+
if self.attn_config["attn_impl"] == "triton" and (
|
210 |
+
not self.attn_config["prefix_lm"]
|
211 |
+
):
|
212 |
+
warnings.warn(
|
213 |
+
UserWarning(
|
214 |
+
'If not using a Prefix Language Model, we recommend setting "attn_impl" to "flash" instead of "triton".'
|
215 |
+
)
|
216 |
+
)
|
217 |
+
if self.attn_config["alibi"] and (
|
218 |
+
not check_alibi_support(self.attn_config["attn_impl"])
|
219 |
+
):
|
220 |
+
raise NotImplementedError(
|
221 |
+
"alibi only implemented with torch, triton, and flash (v2.4.2 or higher) attention."
|
222 |
+
)
|
223 |
+
if self.attn_config["attn_uses_sequence_id"] and (
|
224 |
+
not (
|
225 |
+
self.attn_config["attn_impl"] in ["torch", "triton"]
|
226 |
+
or (
|
227 |
+
self.attn_config["attn_impl"] == "flash"
|
228 |
+
and is_flash_v2_installed(v2_version="v2.1.2")
|
229 |
+
)
|
230 |
+
)
|
231 |
+
):
|
232 |
+
raise NotImplementedError(
|
233 |
+
"attn_uses_sequence_id only implemented with torch, triton, and flash (v2.1.2 or higher) attention."
|
234 |
+
)
|
235 |
+
if self.attn_config["rope"] and self.attn_config["rope_impl"] not in [
|
236 |
+
"dail",
|
237 |
+
"hf",
|
238 |
+
]:
|
239 |
+
raise ValueError(
|
240 |
+
'If rope is being used then rope_impl should be either "dail", or "hf".'
|
241 |
+
)
|
242 |
+
if (
|
243 |
+
self.attn_config["rope"]
|
244 |
+
and self.attn_config["rope_impl"] == "hf"
|
245 |
+
and (
|
246 |
+
self.attn_config["rope_hf_config"]["type"]
|
247 |
+
not in ["no_scaling", "linear", "dynamic"]
|
248 |
+
)
|
249 |
+
):
|
250 |
+
raise ValueError(
|
251 |
+
'If using hf implementation of rope, the type should be one of "no_scaling", "linear" or "dynamic".'
|
252 |
+
)
|
253 |
+
if self.attn_config["rope"] and self.attn_config["rope_impl"] == "dail":
|
254 |
+
if self.attn_config["rope_dail_config"]["type"] not in ["original", "xpos"]:
|
255 |
+
raise ValueError(
|
256 |
+
'If using the dail implementation of rope, the type should be one of "original" or "xpos".'
|
257 |
+
)
|
258 |
+
if not is_flash_v2_installed(v2_version="2.0.1"):
|
259 |
+
raise ImportError(
|
260 |
+
"If using the dail implementation of rope, the flash_attn library v2.0.1 or higher must be installed. Please check the instructions at https://github.com/mosaicml/llm-foundry/blob/main/TUTORIAL.md#what-kinds-of-positional-embeddings-does-llm-foundry-support"
|
261 |
+
)
|
262 |
+
if self.attn_config["sliding_window_size"] != -1 and (
|
263 |
+
not (
|
264 |
+
self.attn_config["attn_impl"] == "flash"
|
265 |
+
and is_flash_v2_installed(v2_version="v2.3.0")
|
266 |
+
)
|
267 |
+
):
|
268 |
+
raise NotImplementedError(
|
269 |
+
"sliding window only implemented with flash attention v2.3.0 or higher."
|
270 |
+
)
|
271 |
if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
|
272 |
+
raise ValueError(
|
273 |
+
"model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!"
|
274 |
+
)
|
275 |
+
if isinstance(self.logit_scale, str) and self.logit_scale != "inv_sqrt_d_model":
|
276 |
+
raise ValueError(
|
277 |
+
f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'."
|
278 |
+
)
|
279 |
+
if self.init_config.get("name", None) is None:
|
280 |
+
raise ValueError(
|
281 |
+
f"self.init_config={self.init_config!r} 'name' needs to be set."
|
282 |
+
)
|
283 |
+
if not (
|
284 |
+
self.learned_pos_emb
|
285 |
+
or self.attn_config["alibi"]
|
286 |
+
or self.attn_config["rope"]
|
287 |
+
):
|
288 |
+
warnings.warn(
|
289 |
+
f"Positional information not being provided to the model using either learned_pos_emb or alibi or rope."
|
290 |
+
)
|
291 |
+
if self.fc_type == "te" or self.ffn_config["ffn_type"] == "te_ln_mlp":
|
292 |
try:
|
293 |
import transformer_engine.pytorch as te
|
294 |
+
|
295 |
del te
|
296 |
except:
|
297 |
+
raise ImportError(
|
298 |
+
"TransformerEngine import fail. `fc_type: te` requires TransformerEngine be installed. "
|
299 |
+
+ "The required version of transformer_engine also requires FlashAttention v1.0.6 is installed:\n"
|
300 |
+
+ "pip install flash-attn==1.0.6 --no-build-isolation \n"
|
301 |
+
+ "pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156"
|
302 |
+
)
|
303 |
+
if self.ffn_config["ffn_type"] == "mptgeglu":
|
304 |
+
raise ValueError(
|
305 |
+
'API CHANGE: `ffn_type=="mptgeglu"` changed to `ffn_type=="mptglu"`. '
|
306 |
+
+ "See [#829](https://github.com/mosaicml/llm-foundry/pull/829) for details."
|
307 |
+
)
|
308 |
+
elif self.ffn_config["ffn_type"] in ["mptmlp", "mptglu"]:
|
309 |
+
self.ffn_config["fc_type"] = self.fc_type
|
310 |
+
elif self.ffn_config["ffn_type"] == "te_ln_mlp":
|
311 |
+
self.ffn_config["bias"] = not self.no_bias
|
312 |
+
if "ffn_act_fn" in self.ffn_config.keys():
|
313 |
+
raise ValueError(
|
314 |
+
f"Transformer Engine block does not support custom activation functions."
|
315 |
+
)
|
316 |
+
if not self.use_pad_tok_in_ffn:
|
317 |
+
try:
|
318 |
+
from flash_attn.bert_padding import unpad_input, pad_input
|
319 |
+
except:
|
320 |
+
raise ImportError(
|
321 |
+
"In order to set `use_pad_tok_in_ffn=False`, please install flash-attn==1.0.9 or flash-attn==2.3.6"
|
322 |
+
)
|
custom_embedding.py
CHANGED
@@ -2,9 +2,10 @@ import torch.nn as nn
|
|
2 |
import torch.nn.functional as F
|
3 |
from torch import Tensor
|
4 |
|
|
|
5 |
class SharedEmbedding(nn.Embedding):
|
6 |
|
7 |
-
def forward(self, input: Tensor, unembed: bool=False) -> Tensor:
|
8 |
if unembed:
|
9 |
return F.linear(input, self.weight)
|
10 |
-
return super().forward(input)
|
|
|
2 |
import torch.nn.functional as F
|
3 |
from torch import Tensor
|
4 |
|
5 |
+
|
6 |
class SharedEmbedding(nn.Embedding):
|
7 |
|
8 |
+
def forward(self, input: Tensor, unembed: bool = False) -> Tensor:
|
9 |
if unembed:
|
10 |
return F.linear(input, self.weight)
|
11 |
+
return super().forward(input)
|
fc.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
from torch import nn
|
2 |
-
|
|
|
3 |
try:
|
4 |
import transformer_engine.pytorch as te
|
5 |
-
|
|
|
6 |
except:
|
7 |
-
pass
|
|
|
1 |
from torch import nn
|
2 |
+
|
3 |
+
FC_CLASS_REGISTRY = {"torch": nn.Linear}
|
4 |
try:
|
5 |
import transformer_engine.pytorch as te
|
6 |
+
|
7 |
+
FC_CLASS_REGISTRY["te"] = te.Linear
|
8 |
except:
|
9 |
+
pass
|
ffn.py
CHANGED
@@ -1,39 +1,173 @@
|
|
1 |
-
"""
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
from .fc import FC_CLASS_REGISTRY
|
|
|
6 |
try:
|
7 |
import transformer_engine.pytorch as te
|
8 |
except:
|
9 |
te = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
class MPTMLP(nn.Module):
|
12 |
|
13 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
super().__init__()
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
self.
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
self.down_proj._is_residual = True
|
22 |
|
23 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
24 |
return self.down_proj(self.act(self.up_proj(x)))
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
if te is not None:
|
27 |
te.LayerNormMLP._has_norm = True
|
28 |
-
FFN_CLASS_REGISTRY[
|
|
|
29 |
|
30 |
-
def build_ffn(
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
if len(kwargs) > 0:
|
34 |
-
raise ValueError(
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
assert te is not None
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MPT Blocks used for the MPT Model."""
|
2 |
+
|
3 |
+
import logging
|
4 |
+
from copy import deepcopy
|
5 |
+
from functools import partial
|
6 |
+
from typing import Any, Callable, Optional, Union
|
7 |
import torch
|
8 |
import torch.nn as nn
|
9 |
from .fc import FC_CLASS_REGISTRY
|
10 |
+
|
11 |
try:
|
12 |
import transformer_engine.pytorch as te
|
13 |
except:
|
14 |
te = None
|
15 |
+
log = logging.getLogger(__name__)
|
16 |
+
_FFN_ACT_FN_DEFAULT = {"name": "gelu", "approximate": "none"}
|
17 |
+
|
18 |
+
|
19 |
+
def resolve_ffn_act_fn(
|
20 |
+
config: Optional[dict] = None,
|
21 |
+
) -> Callable[[torch.Tensor], torch.Tensor]:
|
22 |
+
"""Resolve the activation function for the feed-forward network.
|
23 |
+
Args:
|
24 |
+
config (Optional[dict]): The configuration dictionary for the activation function.
|
25 |
+
The dict config must specify the 'name' of a torch.nn.functional activation
|
26 |
+
function. All of other key values pairs are bound to the function as a partial.
|
27 |
+
Returns:
|
28 |
+
Callable[[torch.Tensor], torch.Tensor]: The activation function.
|
29 |
+
"""
|
30 |
+
if config is None:
|
31 |
+
config = _FFN_ACT_FN_DEFAULT
|
32 |
+
config = deepcopy(config)
|
33 |
+
name = config.pop("name")
|
34 |
+
if not hasattr(torch.nn.functional, name):
|
35 |
+
raise ValueError(f"Unrecognised activation function name ({name}).")
|
36 |
+
act = getattr(torch.nn.functional, name)
|
37 |
+
return partial(act, **config)
|
38 |
+
|
39 |
+
|
40 |
+
_DEFAULT_ACT_FN = resolve_ffn_act_fn(_FFN_ACT_FN_DEFAULT)
|
41 |
+
|
42 |
+
|
43 |
+
def resolve_ffn_hidden_size(
|
44 |
+
d_model: int,
|
45 |
+
expansion_ratio: Union[int, float],
|
46 |
+
ffn_hidden_size: Optional[int] = None,
|
47 |
+
) -> int:
|
48 |
+
"""Resolve the hidden size of the feed-forward network.
|
49 |
+
Args:
|
50 |
+
d_model (int): The dimension of the input and output of the feed-forward network.
|
51 |
+
expansion_ratio (Union[int, float]): The expansion ratio of the feed-forward network.
|
52 |
+
ffn_hidden_size (Optional[int]): The hidden size of the feed-forward network.
|
53 |
+
Returns:
|
54 |
+
int: The hidden size of the feed-forward network.
|
55 |
+
"""
|
56 |
+
if ffn_hidden_size is not None:
|
57 |
+
log.info(
|
58 |
+
f"`expansion_ratio` (={expansion_ratio}) ignored when `ffn_hidden_size` (={ffn_hidden_size}) is specified."
|
59 |
+
)
|
60 |
+
else:
|
61 |
+
ffn_hidden_size = int(d_model * expansion_ratio)
|
62 |
+
if ffn_hidden_size != d_model * expansion_ratio:
|
63 |
+
raise ValueError(
|
64 |
+
f"`d_model * expansion_ratio` must be an integer (d_model={d_model!r}; expansion_ratio={expansion_ratio!r}; d_model * expansion_ratio={d_model * expansion_ratio!r})."
|
65 |
+
)
|
66 |
+
return ffn_hidden_size
|
67 |
+
|
68 |
|
69 |
class MPTMLP(nn.Module):
|
70 |
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
d_model: int,
|
74 |
+
expansion_ratio: Union[int, float],
|
75 |
+
fc_type: str = "torch",
|
76 |
+
ffn_hidden_size: Optional[int] = None,
|
77 |
+
act_fn: Callable[[torch.Tensor], torch.Tensor] = _DEFAULT_ACT_FN,
|
78 |
+
device: Optional[str] = None,
|
79 |
+
bias: bool = True,
|
80 |
+
):
|
81 |
super().__init__()
|
82 |
+
ffn_hidden_size = resolve_ffn_hidden_size(
|
83 |
+
d_model, expansion_ratio, ffn_hidden_size
|
84 |
+
)
|
85 |
+
self.fc_kwargs: dict[str, Any] = {"bias": bias}
|
86 |
+
if fc_type != "te":
|
87 |
+
self.fc_kwargs["device"] = device
|
88 |
+
self.up_proj = FC_CLASS_REGISTRY[fc_type](
|
89 |
+
d_model, ffn_hidden_size, **self.fc_kwargs
|
90 |
+
)
|
91 |
+
self.act = act_fn
|
92 |
+
self.down_proj = FC_CLASS_REGISTRY[fc_type](
|
93 |
+
ffn_hidden_size, d_model, **self.fc_kwargs
|
94 |
+
)
|
95 |
self.down_proj._is_residual = True
|
96 |
|
97 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
98 |
return self.down_proj(self.act(self.up_proj(x)))
|
99 |
+
|
100 |
+
|
101 |
+
class MPTGLU(MPTMLP):
|
102 |
+
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
d_model: int,
|
106 |
+
expansion_ratio: Union[int, float],
|
107 |
+
fc_type: str = "torch",
|
108 |
+
ffn_hidden_size: Optional[int] = None,
|
109 |
+
act_fn: Callable[[torch.Tensor], torch.Tensor] = _DEFAULT_ACT_FN,
|
110 |
+
device: Optional[str] = None,
|
111 |
+
bias: bool = True,
|
112 |
+
):
|
113 |
+
super().__init__(
|
114 |
+
d_model=d_model,
|
115 |
+
expansion_ratio=expansion_ratio,
|
116 |
+
fc_type=fc_type,
|
117 |
+
ffn_hidden_size=ffn_hidden_size,
|
118 |
+
act_fn=act_fn,
|
119 |
+
device=device,
|
120 |
+
bias=bias,
|
121 |
+
)
|
122 |
+
self.gate_proj = FC_CLASS_REGISTRY[fc_type](
|
123 |
+
d_model, self.up_proj.out_features, **self.fc_kwargs
|
124 |
+
)
|
125 |
+
|
126 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
127 |
+
return self.down_proj(self.act(self.gate_proj(x)) * self.up_proj(x))
|
128 |
+
|
129 |
+
|
130 |
+
FFN_CLASS_REGISTRY = {"mptmlp": MPTMLP, "mptglu": MPTGLU}
|
131 |
if te is not None:
|
132 |
te.LayerNormMLP._has_norm = True
|
133 |
+
FFN_CLASS_REGISTRY["te_ln_mlp"] = te.LayerNormMLP
|
134 |
+
|
135 |
|
136 |
+
def build_ffn(
|
137 |
+
d_model: int,
|
138 |
+
expansion_ratio: Union[int, float],
|
139 |
+
fc_type: str = "torch",
|
140 |
+
ffn_hidden_size: Optional[int] = None,
|
141 |
+
ffn_act_fn: Optional[dict] = None,
|
142 |
+
device: Optional[str] = None,
|
143 |
+
bias: bool = True,
|
144 |
+
**kwargs: Any,
|
145 |
+
) -> nn.Module:
|
146 |
+
ffn_type = kwargs.pop("ffn_type")
|
147 |
+
if ffn_type in ["mptmlp", "mptglu"]:
|
148 |
if len(kwargs) > 0:
|
149 |
+
raise ValueError(
|
150 |
+
f"MPTMLP (or MPTGLU) got an unexpected keyword argument: {kwargs}"
|
151 |
+
)
|
152 |
+
return FFN_CLASS_REGISTRY[ffn_type](
|
153 |
+
d_model=d_model,
|
154 |
+
expansion_ratio=expansion_ratio,
|
155 |
+
fc_type=fc_type,
|
156 |
+
act_fn=resolve_ffn_act_fn(ffn_act_fn),
|
157 |
+
ffn_hidden_size=ffn_hidden_size,
|
158 |
+
device=device,
|
159 |
+
bias=bias,
|
160 |
+
)
|
161 |
+
elif ffn_type == "te_ln_mlp":
|
162 |
assert te is not None
|
163 |
+
ffn_hidden_size = resolve_ffn_hidden_size(
|
164 |
+
d_model, expansion_ratio, ffn_hidden_size
|
165 |
+
)
|
166 |
+
if ffn_act_fn is not None:
|
167 |
+
raise ValueError(
|
168 |
+
f"Transformer Engine block does not support custom activation functions."
|
169 |
+
)
|
170 |
+
return te.LayerNormMLP(
|
171 |
+
hidden_size=d_model, ffn_hidden_size=ffn_hidden_size, bias=bias, **kwargs
|
172 |
+
)
|
173 |
+
raise ValueError(f"ffn_type={ffn_type!r} not recognized.")
|
flash_attn_triton.py
CHANGED
@@ -1,17 +1,14 @@
|
|
1 |
"""
|
2 |
Copied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py
|
3 |
update imports to use 'triton_pre_mlir'
|
4 |
-
|
5 |
*Experimental* implementation of FlashAttention in Triton.
|
6 |
Tested with triton==2.0.0.dev20221202.
|
7 |
Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions
|
8 |
other than 64:
|
9 |
https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207
|
10 |
We'll update this implementation with the new Triton backend once this is fixed.
|
11 |
-
|
12 |
We use the FlashAttention implementation from Phil Tillet a starting point.
|
13 |
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
|
14 |
-
|
15 |
Changes:
|
16 |
- Implement both causal and non-causal attention.
|
17 |
- Implement both self-attention and cross-attention.
|
@@ -22,7 +19,6 @@ Changes:
|
|
22 |
- Make the backward for d=128 much faster by reducing register spilling.
|
23 |
- Optionally parallelize the backward pass across seqlen_k, to deal with the case of
|
24 |
small batch size * nheads.
|
25 |
-
|
26 |
Caution:
|
27 |
- This is an *experimental* implementation. The forward pass should be quite robust but
|
28 |
I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler).
|
@@ -32,7 +28,6 @@ I'm not 100% sure that the backward pass doesn't have race conditions (due to th
|
|
32 |
"test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
|
33 |
for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
|
34 |
that there are none left for other head dimensions.
|
35 |
-
|
36 |
Differences between this Triton version and the CUDA version:
|
37 |
- Triton version doesn't support dropout.
|
38 |
- Triton forward is generally faster than CUDA forward, while Triton backward is
|
@@ -41,14 +36,61 @@ than CUDA forward + backward.
|
|
41 |
- Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
|
42 |
- Triton version supports attention bias, while CUDA version doesn't.
|
43 |
"""
|
|
|
44 |
import math
|
45 |
import torch
|
46 |
import triton_pre_mlir as triton
|
47 |
import triton_pre_mlir.language as tl
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
@triton.jit
|
51 |
-
def _fwd_kernel(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
start_m = tl.program_id(0)
|
53 |
off_hb = tl.program_id(1)
|
54 |
off_b = off_hb // nheads
|
@@ -56,16 +98,36 @@ def _fwd_kernel(Q, K, V, Bias, Out, Lse, TMP, softmax_scale, stride_qb, stride_q
|
|
56 |
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
57 |
offs_n = tl.arange(0, BLOCK_N)
|
58 |
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
59 |
-
q_ptrs =
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
|
64 |
-
elif BIAS_TYPE ==
|
65 |
-
b_ptrs =
|
|
|
|
|
|
|
|
|
|
|
66 |
t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
|
67 |
-
lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float(
|
68 |
-
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float(
|
69 |
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
70 |
if EVEN_M & EVEN_N:
|
71 |
if EVEN_HEADDIM:
|
@@ -75,7 +137,11 @@ def _fwd_kernel(Q, K, V, Bias, Out, Lse, TMP, softmax_scale, stride_qb, stride_q
|
|
75 |
elif EVEN_HEADDIM:
|
76 |
q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
|
77 |
else:
|
78 |
-
q = tl.load(
|
|
|
|
|
|
|
|
|
79 |
end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
|
80 |
for start_n in range(0, end_n, BLOCK_N):
|
81 |
start_n = tl.multiple_of(start_n, BLOCK_N)
|
@@ -83,29 +149,51 @@ def _fwd_kernel(Q, K, V, Bias, Out, Lse, TMP, softmax_scale, stride_qb, stride_q
|
|
83 |
if EVEN_HEADDIM:
|
84 |
k = tl.load(k_ptrs + start_n * stride_kn)
|
85 |
else:
|
86 |
-
k = tl.load(
|
|
|
|
|
|
|
|
|
87 |
elif EVEN_HEADDIM:
|
88 |
-
k = tl.load(
|
|
|
|
|
|
|
|
|
89 |
else:
|
90 |
-
k = tl.load(
|
|
|
|
|
|
|
|
|
|
|
91 |
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
92 |
qk += tl.dot(q, k, trans_b=True)
|
93 |
if not EVEN_N:
|
94 |
-
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float(
|
95 |
if IS_CAUSAL:
|
96 |
-
qk += tl.where(
|
97 |
-
|
98 |
-
|
|
|
|
|
99 |
if EVEN_N:
|
100 |
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
101 |
else:
|
102 |
-
bias = tl.load(
|
|
|
|
|
103 |
bias = bias[None, :]
|
104 |
-
elif BIAS_TYPE ==
|
105 |
if EVEN_M & EVEN_N:
|
106 |
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
107 |
else:
|
108 |
-
bias = tl.load(
|
|
|
|
|
|
|
|
|
|
|
109 |
qk = qk * softmax_scale + bias
|
110 |
m_ij = tl.maximum(tl.max(qk, 1), lse_i)
|
111 |
p = tl.exp(qk - m_ij[:, None])
|
@@ -121,11 +209,24 @@ def _fwd_kernel(Q, K, V, Bias, Out, Lse, TMP, softmax_scale, stride_qb, stride_q
|
|
121 |
if EVEN_HEADDIM:
|
122 |
v = tl.load(v_ptrs + start_n * stride_vn)
|
123 |
else:
|
124 |
-
v = tl.load(
|
|
|
|
|
|
|
|
|
125 |
elif EVEN_HEADDIM:
|
126 |
-
v = tl.load(
|
|
|
|
|
|
|
|
|
127 |
else:
|
128 |
-
v = tl.load(
|
|
|
|
|
|
|
|
|
|
|
129 |
p = p.to(v.dtype)
|
130 |
acc_o += tl.dot(p, v)
|
131 |
m_i = m_ij
|
@@ -140,7 +241,12 @@ def _fwd_kernel(Q, K, V, Bias, Out, Lse, TMP, softmax_scale, stride_qb, stride_q
|
|
140 |
lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
|
141 |
tl.store(lse_ptrs, lse_i)
|
142 |
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
143 |
-
out_ptrs =
|
|
|
|
|
|
|
|
|
|
|
144 |
if EVEN_M:
|
145 |
if EVEN_HEADDIM:
|
146 |
tl.store(out_ptrs, acc_o)
|
@@ -149,23 +255,73 @@ def _fwd_kernel(Q, K, V, Bias, Out, Lse, TMP, softmax_scale, stride_qb, stride_q
|
|
149 |
elif EVEN_HEADDIM:
|
150 |
tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
|
151 |
else:
|
152 |
-
tl.store(
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
@triton.jit
|
155 |
-
def _bwd_preprocess_do_o_dot(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
start_m = tl.program_id(0)
|
157 |
off_hb = tl.program_id(1)
|
158 |
off_b = off_hb // nheads
|
159 |
off_h = off_hb % nheads
|
160 |
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
161 |
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
162 |
-
o = tl.load(
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
delta = tl.sum(o * do, axis=1)
|
165 |
tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
|
166 |
|
|
|
167 |
@triton.jit
|
168 |
-
def _bwd_store_dk_dv(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
if EVEN_N & EVEN_M:
|
170 |
if EVEN_HEADDIM:
|
171 |
tl.store(dv_ptrs, dv)
|
@@ -177,11 +333,49 @@ def _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim
|
|
177 |
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
|
178 |
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
|
179 |
else:
|
180 |
-
tl.store(
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
@triton.jit
|
184 |
-
def _bwd_kernel_one_col_block(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
begin_m = 0 if not IS_CAUSAL else start_n * BLOCK_N // BLOCK_M * BLOCK_M
|
186 |
offs_qm = begin_m + tl.arange(0, BLOCK_M)
|
187 |
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
@@ -192,16 +386,28 @@ def _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, so
|
|
192 |
v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
|
193 |
do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
|
194 |
dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
|
195 |
-
if BIAS_TYPE ==
|
196 |
b_ptrs = Bias + offs_n
|
197 |
-
elif BIAS_TYPE ==
|
198 |
b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
|
199 |
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
200 |
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
201 |
if begin_m >= seqlen_q:
|
202 |
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
203 |
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
204 |
-
_bwd_store_dk_dv(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
return
|
206 |
if EVEN_N & EVEN_M:
|
207 |
if EVEN_HEADDIM:
|
@@ -214,8 +420,16 @@ def _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, so
|
|
214 |
k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
215 |
v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
216 |
else:
|
217 |
-
k = tl.load(
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
|
220 |
for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
|
221 |
start_m = tl.multiple_of(start_m, BLOCK_M)
|
@@ -225,37 +439,52 @@ def _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, so
|
|
225 |
elif EVEN_HEADDIM:
|
226 |
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
|
227 |
else:
|
228 |
-
q = tl.load(
|
|
|
|
|
|
|
|
|
229 |
qk = tl.dot(q, k, trans_b=True)
|
230 |
if not EVEN_N:
|
231 |
-
qk = tl.where(offs_n[None, :] < seqlen_k, qk, float(
|
232 |
if IS_CAUSAL:
|
233 |
-
qk = tl.where(offs_m_curr[:, None] >= offs_n[None, :], qk, float(
|
234 |
-
if BIAS_TYPE !=
|
235 |
tl.debug_barrier()
|
236 |
-
if BIAS_TYPE ==
|
237 |
if EVEN_N:
|
238 |
bias = tl.load(b_ptrs).to(tl.float32)
|
239 |
else:
|
240 |
-
bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(
|
|
|
|
|
241 |
bias = bias[None, :]
|
242 |
-
elif BIAS_TYPE ==
|
243 |
if EVEN_M & EVEN_N:
|
244 |
bias = tl.load(b_ptrs).to(tl.float32)
|
245 |
else:
|
246 |
-
bias = tl.load(
|
|
|
|
|
|
|
|
|
|
|
247 |
qk = qk * softmax_scale + bias
|
248 |
if not EVEN_M & EVEN_HEADDIM:
|
249 |
tl.debug_barrier()
|
250 |
lse_i = tl.load(LSE + offs_m_curr)
|
251 |
-
if BIAS_TYPE ==
|
252 |
p = tl.exp(qk * softmax_scale - lse_i[:, None])
|
253 |
else:
|
254 |
p = tl.exp(qk - lse_i[:, None])
|
255 |
if EVEN_M & EVEN_HEADDIM:
|
256 |
do = tl.load(do_ptrs)
|
257 |
else:
|
258 |
-
do = tl.load(
|
|
|
|
|
|
|
|
|
259 |
dv += tl.dot(p.to(do.dtype), do, trans_a=True)
|
260 |
if not EVEN_M & EVEN_HEADDIM:
|
261 |
tl.debug_barrier()
|
@@ -269,17 +498,39 @@ def _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, so
|
|
269 |
tl.debug_barrier()
|
270 |
if not ATOMIC_ADD:
|
271 |
if EVEN_M & EVEN_HEADDIM:
|
272 |
-
dq = tl.load(dq_ptrs, eviction_policy=
|
273 |
dq += tl.dot(ds, k)
|
274 |
-
tl.store(dq_ptrs, dq, eviction_policy=
|
275 |
elif EVEN_HEADDIM:
|
276 |
-
dq = tl.load(
|
|
|
|
|
|
|
|
|
|
|
277 |
dq += tl.dot(ds, k)
|
278 |
-
tl.store(
|
|
|
|
|
|
|
|
|
|
|
279 |
else:
|
280 |
-
dq = tl.load(
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
dq += tl.dot(ds, k)
|
282 |
-
tl.store(
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
else:
|
284 |
dq = tl.dot(ds, k)
|
285 |
if EVEN_M & EVEN_HEADDIM:
|
@@ -287,23 +538,122 @@ def _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, so
|
|
287 |
elif EVEN_HEADDIM:
|
288 |
tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
|
289 |
else:
|
290 |
-
tl.atomic_add(
|
|
|
|
|
|
|
|
|
|
|
291 |
dq_ptrs += BLOCK_M * stride_dqm
|
292 |
q_ptrs += BLOCK_M * stride_qm
|
293 |
do_ptrs += BLOCK_M * stride_dom
|
294 |
-
if BIAS_TYPE ==
|
295 |
b_ptrs += BLOCK_M * stride_bm
|
296 |
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
297 |
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
298 |
-
_bwd_store_dk_dv(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
def init_to_zero(name):
|
301 |
return lambda nargs: nargs[name].zero_()
|
302 |
|
303 |
-
|
304 |
-
@triton.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
@triton.jit
|
306 |
-
def _bwd_kernel(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
off_hb = tl.program_id(1)
|
308 |
off_b = off_hb // nheads
|
309 |
off_h = off_hb % nheads
|
@@ -314,30 +664,97 @@ def _bwd_kernel(Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb,
|
|
314 |
DQ += off_b * stride_dqb + off_h * stride_dqh
|
315 |
DK += off_b * stride_dkb + off_h * stride_dkh
|
316 |
DV += off_b * stride_dvb + off_h * stride_dvh
|
317 |
-
if BIAS_TYPE !=
|
318 |
Bias += off_b * stride_bb + off_h * stride_bh
|
319 |
D += off_hb * seqlen_q_rounded
|
320 |
LSE += off_hb * seqlen_q_rounded
|
321 |
if not SEQUENCE_PARALLEL:
|
322 |
num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
|
323 |
for start_n in range(0, num_block_n):
|
324 |
-
_bwd_kernel_one_col_block(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
else:
|
326 |
start_n = tl.program_id(0)
|
327 |
-
_bwd_kernel_one_col_block(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
|
329 |
def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
330 |
(batch, seqlen_q, nheads, d) = q.shape
|
331 |
(_, seqlen_k, _, _) = k.shape
|
332 |
assert k.shape == (batch, seqlen_k, nheads, d)
|
333 |
assert v.shape == (batch, seqlen_k, nheads, d)
|
334 |
-
assert d <= 128,
|
335 |
-
assert q.dtype == k.dtype == v.dtype,
|
336 |
-
assert q.dtype in [torch.float16, torch.bfloat16],
|
337 |
assert q.is_cuda and k.is_cuda and v.is_cuda
|
338 |
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
339 |
has_bias = bias is not None
|
340 |
-
bias_type =
|
341 |
if has_bias:
|
342 |
assert bias.dtype in [q.dtype, torch.float]
|
343 |
assert bias.is_cuda
|
@@ -345,25 +762,72 @@ def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
|
345 |
if bias.stride(-1) != 1:
|
346 |
bias = bias.contiguous()
|
347 |
if bias.shape[2:] == (1, seqlen_k):
|
348 |
-
bias_type =
|
349 |
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
350 |
-
bias_type =
|
351 |
else:
|
352 |
-
raise RuntimeError(
|
|
|
|
|
353 |
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
354 |
-
bias_strides = (
|
|
|
|
|
355 |
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
356 |
-
lse = torch.empty(
|
357 |
-
|
|
|
|
|
|
|
|
|
358 |
o = torch.empty_like(q)
|
359 |
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
360 |
BLOCK = 128
|
361 |
num_warps = 4 if d <= 64 else 8
|
362 |
-
grid = lambda META: (triton.cdiv(seqlen_q, META[
|
363 |
-
_fwd_kernel[grid](
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
return (o, lse, softmax_scale)
|
365 |
|
366 |
-
|
|
|
|
|
|
|
367 |
if do.stride(-1) != 1:
|
368 |
do = do.contiguous()
|
369 |
(batch, seqlen_q, nheads, d) = q.shape
|
@@ -377,40 +841,115 @@ def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=Fals
|
|
377 |
dq_accum = torch.empty_like(q, dtype=torch.float32)
|
378 |
delta = torch.empty_like(lse)
|
379 |
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
380 |
-
grid = lambda META: (triton.cdiv(seqlen_q, META[
|
381 |
-
_bwd_preprocess_do_o_dot[grid](
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
has_bias = bias is not None
|
383 |
-
bias_type =
|
384 |
if has_bias:
|
385 |
assert bias.dtype in [q.dtype, torch.float]
|
386 |
assert bias.is_cuda
|
387 |
assert bias.dim() == 4
|
388 |
assert bias.stride(-1) == 1
|
389 |
if bias.shape[2:] == (1, seqlen_k):
|
390 |
-
bias_type =
|
391 |
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
392 |
-
bias_type =
|
393 |
else:
|
394 |
-
raise RuntimeError(
|
|
|
|
|
395 |
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
396 |
-
bias_strides = (
|
397 |
-
|
398 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
dq.copy_(dq_accum)
|
400 |
|
|
|
401 |
class FlashAttnQKVPackedFunc(torch.autograd.Function):
|
402 |
|
403 |
@staticmethod
|
404 |
def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
|
405 |
"""
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
"""
|
411 |
if qkv.stride(-1) != 1:
|
412 |
qkv = qkv.contiguous()
|
413 |
-
(o, lse, ctx.softmax_scale) = _flash_attn_forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
414 |
ctx.save_for_backward(qkv, o, lse, bias)
|
415 |
ctx.causal = causal
|
416 |
return o
|
@@ -418,26 +957,51 @@ class FlashAttnQKVPackedFunc(torch.autograd.Function):
|
|
418 |
@staticmethod
|
419 |
def backward(ctx, do):
|
420 |
(qkv, o, lse, bias) = ctx.saved_tensors
|
421 |
-
assert not ctx.needs_input_grad[
|
|
|
|
|
422 |
with torch.inference_mode():
|
423 |
dqkv = torch.empty_like(qkv)
|
424 |
-
_flash_attn_backward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
425 |
return (dqkv, None, None, None)
|
|
|
|
|
426 |
flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
|
427 |
|
|
|
428 |
class FlashAttnKVPackedFunc(torch.autograd.Function):
|
429 |
|
430 |
@staticmethod
|
431 |
def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
|
432 |
"""
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
"""
|
439 |
(q, kv) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
|
440 |
-
(o, lse, ctx.softmax_scale) = _flash_attn_forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
441 |
ctx.save_for_backward(q, kv, o, lse, bias)
|
442 |
ctx.causal = causal
|
443 |
return o
|
@@ -446,27 +1010,47 @@ class FlashAttnKVPackedFunc(torch.autograd.Function):
|
|
446 |
def backward(ctx, do):
|
447 |
(q, kv, o, lse, bias) = ctx.saved_tensors
|
448 |
if len(ctx.needs_input_grad) >= 3:
|
449 |
-
assert not ctx.needs_input_grad[
|
|
|
|
|
450 |
with torch.inference_mode():
|
451 |
dq = torch.empty_like(q)
|
452 |
dkv = torch.empty_like(kv)
|
453 |
-
_flash_attn_backward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
454 |
return (dq, dkv, None, None, None)
|
|
|
|
|
455 |
flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
|
456 |
|
|
|
457 |
class FlashAttnFunc(torch.autograd.Function):
|
458 |
|
459 |
@staticmethod
|
460 |
def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
|
461 |
"""
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
"""
|
468 |
(q, k, v) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
|
469 |
-
(o, lse, ctx.softmax_scale) = _flash_attn_forward(
|
|
|
|
|
470 |
ctx.save_for_backward(q, k, v, o, lse, bias)
|
471 |
ctx.causal = causal
|
472 |
return o
|
@@ -474,11 +1058,28 @@ class FlashAttnFunc(torch.autograd.Function):
|
|
474 |
@staticmethod
|
475 |
def backward(ctx, do):
|
476 |
(q, k, v, o, lse, bias) = ctx.saved_tensors
|
477 |
-
assert not ctx.needs_input_grad[
|
|
|
|
|
478 |
with torch.inference_mode():
|
479 |
dq = torch.empty_like(q)
|
480 |
dk = torch.empty_like(k)
|
481 |
dv = torch.empty_like(v)
|
482 |
-
_flash_attn_backward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
483 |
return (dq, dk, dv, None, None, None)
|
484 |
-
|
|
|
|
|
|
1 |
"""
|
2 |
Copied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py
|
3 |
update imports to use 'triton_pre_mlir'
|
|
|
4 |
*Experimental* implementation of FlashAttention in Triton.
|
5 |
Tested with triton==2.0.0.dev20221202.
|
6 |
Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions
|
7 |
other than 64:
|
8 |
https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207
|
9 |
We'll update this implementation with the new Triton backend once this is fixed.
|
|
|
10 |
We use the FlashAttention implementation from Phil Tillet a starting point.
|
11 |
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
|
|
|
12 |
Changes:
|
13 |
- Implement both causal and non-causal attention.
|
14 |
- Implement both self-attention and cross-attention.
|
|
|
19 |
- Make the backward for d=128 much faster by reducing register spilling.
|
20 |
- Optionally parallelize the backward pass across seqlen_k, to deal with the case of
|
21 |
small batch size * nheads.
|
|
|
22 |
Caution:
|
23 |
- This is an *experimental* implementation. The forward pass should be quite robust but
|
24 |
I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler).
|
|
|
28 |
"test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
|
29 |
for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
|
30 |
that there are none left for other head dimensions.
|
|
|
31 |
Differences between this Triton version and the CUDA version:
|
32 |
- Triton version doesn't support dropout.
|
33 |
- Triton forward is generally faster than CUDA forward, while Triton backward is
|
|
|
36 |
- Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
|
37 |
- Triton version supports attention bias, while CUDA version doesn't.
|
38 |
"""
|
39 |
+
|
40 |
import math
|
41 |
import torch
|
42 |
import triton_pre_mlir as triton
|
43 |
import triton_pre_mlir.language as tl
|
44 |
|
45 |
+
|
46 |
+
@triton.heuristics(
|
47 |
+
{
|
48 |
+
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
49 |
+
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
|
50 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
51 |
+
}
|
52 |
+
)
|
53 |
@triton.jit
|
54 |
+
def _fwd_kernel(
|
55 |
+
Q,
|
56 |
+
K,
|
57 |
+
V,
|
58 |
+
Bias,
|
59 |
+
Out,
|
60 |
+
Lse,
|
61 |
+
TMP,
|
62 |
+
softmax_scale,
|
63 |
+
stride_qb,
|
64 |
+
stride_qh,
|
65 |
+
stride_qm,
|
66 |
+
stride_kb,
|
67 |
+
stride_kh,
|
68 |
+
stride_kn,
|
69 |
+
stride_vb,
|
70 |
+
stride_vh,
|
71 |
+
stride_vn,
|
72 |
+
stride_bb,
|
73 |
+
stride_bh,
|
74 |
+
stride_bm,
|
75 |
+
stride_ob,
|
76 |
+
stride_oh,
|
77 |
+
stride_om,
|
78 |
+
nheads,
|
79 |
+
seqlen_q,
|
80 |
+
seqlen_k,
|
81 |
+
seqlen_q_rounded,
|
82 |
+
headdim,
|
83 |
+
CACHE_KEY_SEQLEN_Q,
|
84 |
+
CACHE_KEY_SEQLEN_K,
|
85 |
+
BIAS_TYPE: tl.constexpr,
|
86 |
+
IS_CAUSAL: tl.constexpr,
|
87 |
+
BLOCK_HEADDIM: tl.constexpr,
|
88 |
+
EVEN_M: tl.constexpr,
|
89 |
+
EVEN_N: tl.constexpr,
|
90 |
+
EVEN_HEADDIM: tl.constexpr,
|
91 |
+
BLOCK_M: tl.constexpr,
|
92 |
+
BLOCK_N: tl.constexpr,
|
93 |
+
):
|
94 |
start_m = tl.program_id(0)
|
95 |
off_hb = tl.program_id(1)
|
96 |
off_b = off_hb // nheads
|
|
|
98 |
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
99 |
offs_n = tl.arange(0, BLOCK_N)
|
100 |
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
101 |
+
q_ptrs = (
|
102 |
+
Q
|
103 |
+
+ off_b * stride_qb
|
104 |
+
+ off_h * stride_qh
|
105 |
+
+ (offs_m[:, None] * stride_qm + offs_d[None, :])
|
106 |
+
)
|
107 |
+
k_ptrs = (
|
108 |
+
K
|
109 |
+
+ off_b * stride_kb
|
110 |
+
+ off_h * stride_kh
|
111 |
+
+ (offs_n[:, None] * stride_kn + offs_d[None, :])
|
112 |
+
)
|
113 |
+
v_ptrs = (
|
114 |
+
V
|
115 |
+
+ off_b * stride_vb
|
116 |
+
+ off_h * stride_vh
|
117 |
+
+ (offs_n[:, None] * stride_vn + offs_d[None, :])
|
118 |
+
)
|
119 |
+
if BIAS_TYPE == "vector":
|
120 |
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
|
121 |
+
elif BIAS_TYPE == "matrix":
|
122 |
+
b_ptrs = (
|
123 |
+
Bias
|
124 |
+
+ off_b * stride_bb
|
125 |
+
+ off_h * stride_bh
|
126 |
+
+ (offs_m[:, None] * stride_bm + offs_n[None, :])
|
127 |
+
)
|
128 |
t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
|
129 |
+
lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
130 |
+
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
131 |
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
132 |
if EVEN_M & EVEN_N:
|
133 |
if EVEN_HEADDIM:
|
|
|
137 |
elif EVEN_HEADDIM:
|
138 |
q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
|
139 |
else:
|
140 |
+
q = tl.load(
|
141 |
+
q_ptrs,
|
142 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
143 |
+
other=0.0,
|
144 |
+
)
|
145 |
end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
|
146 |
for start_n in range(0, end_n, BLOCK_N):
|
147 |
start_n = tl.multiple_of(start_n, BLOCK_N)
|
|
|
149 |
if EVEN_HEADDIM:
|
150 |
k = tl.load(k_ptrs + start_n * stride_kn)
|
151 |
else:
|
152 |
+
k = tl.load(
|
153 |
+
k_ptrs + start_n * stride_kn,
|
154 |
+
mask=offs_d[None, :] < headdim,
|
155 |
+
other=0.0,
|
156 |
+
)
|
157 |
elif EVEN_HEADDIM:
|
158 |
+
k = tl.load(
|
159 |
+
k_ptrs + start_n * stride_kn,
|
160 |
+
mask=(start_n + offs_n)[:, None] < seqlen_k,
|
161 |
+
other=0.0,
|
162 |
+
)
|
163 |
else:
|
164 |
+
k = tl.load(
|
165 |
+
k_ptrs + start_n * stride_kn,
|
166 |
+
mask=((start_n + offs_n)[:, None] < seqlen_k)
|
167 |
+
& (offs_d[None, :] < headdim),
|
168 |
+
other=0.0,
|
169 |
+
)
|
170 |
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
171 |
qk += tl.dot(q, k, trans_b=True)
|
172 |
if not EVEN_N:
|
173 |
+
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf"))
|
174 |
if IS_CAUSAL:
|
175 |
+
qk += tl.where(
|
176 |
+
offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf")
|
177 |
+
)
|
178 |
+
if BIAS_TYPE != "none":
|
179 |
+
if BIAS_TYPE == "vector":
|
180 |
if EVEN_N:
|
181 |
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
182 |
else:
|
183 |
+
bias = tl.load(
|
184 |
+
b_ptrs + start_n, mask=start_n + offs_n < seqlen_k, other=0.0
|
185 |
+
).to(tl.float32)
|
186 |
bias = bias[None, :]
|
187 |
+
elif BIAS_TYPE == "matrix":
|
188 |
if EVEN_M & EVEN_N:
|
189 |
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
190 |
else:
|
191 |
+
bias = tl.load(
|
192 |
+
b_ptrs + start_n,
|
193 |
+
mask=(offs_m[:, None] < seqlen_q)
|
194 |
+
& ((start_n + offs_n)[None, :] < seqlen_k),
|
195 |
+
other=0.0,
|
196 |
+
).to(tl.float32)
|
197 |
qk = qk * softmax_scale + bias
|
198 |
m_ij = tl.maximum(tl.max(qk, 1), lse_i)
|
199 |
p = tl.exp(qk - m_ij[:, None])
|
|
|
209 |
if EVEN_HEADDIM:
|
210 |
v = tl.load(v_ptrs + start_n * stride_vn)
|
211 |
else:
|
212 |
+
v = tl.load(
|
213 |
+
v_ptrs + start_n * stride_vn,
|
214 |
+
mask=offs_d[None, :] < headdim,
|
215 |
+
other=0.0,
|
216 |
+
)
|
217 |
elif EVEN_HEADDIM:
|
218 |
+
v = tl.load(
|
219 |
+
v_ptrs + start_n * stride_vn,
|
220 |
+
mask=(start_n + offs_n)[:, None] < seqlen_k,
|
221 |
+
other=0.0,
|
222 |
+
)
|
223 |
else:
|
224 |
+
v = tl.load(
|
225 |
+
v_ptrs + start_n * stride_vn,
|
226 |
+
mask=((start_n + offs_n)[:, None] < seqlen_k)
|
227 |
+
& (offs_d[None, :] < headdim),
|
228 |
+
other=0.0,
|
229 |
+
)
|
230 |
p = p.to(v.dtype)
|
231 |
acc_o += tl.dot(p, v)
|
232 |
m_i = m_ij
|
|
|
241 |
lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
|
242 |
tl.store(lse_ptrs, lse_i)
|
243 |
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
244 |
+
out_ptrs = (
|
245 |
+
Out
|
246 |
+
+ off_b * stride_ob
|
247 |
+
+ off_h * stride_oh
|
248 |
+
+ (offs_m[:, None] * stride_om + offs_d[None, :])
|
249 |
+
)
|
250 |
if EVEN_M:
|
251 |
if EVEN_HEADDIM:
|
252 |
tl.store(out_ptrs, acc_o)
|
|
|
255 |
elif EVEN_HEADDIM:
|
256 |
tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
|
257 |
else:
|
258 |
+
tl.store(
|
259 |
+
out_ptrs,
|
260 |
+
acc_o,
|
261 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
262 |
+
)
|
263 |
+
|
264 |
|
265 |
@triton.jit
|
266 |
+
def _bwd_preprocess_do_o_dot(
|
267 |
+
Out,
|
268 |
+
DO,
|
269 |
+
Delta,
|
270 |
+
stride_ob,
|
271 |
+
stride_oh,
|
272 |
+
stride_om,
|
273 |
+
stride_dob,
|
274 |
+
stride_doh,
|
275 |
+
stride_dom,
|
276 |
+
nheads,
|
277 |
+
seqlen_q,
|
278 |
+
seqlen_q_rounded,
|
279 |
+
headdim,
|
280 |
+
BLOCK_M: tl.constexpr,
|
281 |
+
BLOCK_HEADDIM: tl.constexpr,
|
282 |
+
):
|
283 |
start_m = tl.program_id(0)
|
284 |
off_hb = tl.program_id(1)
|
285 |
off_b = off_hb // nheads
|
286 |
off_h = off_hb % nheads
|
287 |
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
288 |
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
289 |
+
o = tl.load(
|
290 |
+
Out
|
291 |
+
+ off_b * stride_ob
|
292 |
+
+ off_h * stride_oh
|
293 |
+
+ offs_m[:, None] * stride_om
|
294 |
+
+ offs_d[None, :],
|
295 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
296 |
+
other=0.0,
|
297 |
+
).to(tl.float32)
|
298 |
+
do = tl.load(
|
299 |
+
DO
|
300 |
+
+ off_b * stride_dob
|
301 |
+
+ off_h * stride_doh
|
302 |
+
+ offs_m[:, None] * stride_dom
|
303 |
+
+ offs_d[None, :],
|
304 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
305 |
+
other=0.0,
|
306 |
+
).to(tl.float32)
|
307 |
delta = tl.sum(o * do, axis=1)
|
308 |
tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
|
309 |
|
310 |
+
|
311 |
@triton.jit
|
312 |
+
def _bwd_store_dk_dv(
|
313 |
+
dk_ptrs,
|
314 |
+
dv_ptrs,
|
315 |
+
dk,
|
316 |
+
dv,
|
317 |
+
offs_n,
|
318 |
+
offs_d,
|
319 |
+
seqlen_k,
|
320 |
+
headdim,
|
321 |
+
EVEN_M: tl.constexpr,
|
322 |
+
EVEN_N: tl.constexpr,
|
323 |
+
EVEN_HEADDIM: tl.constexpr,
|
324 |
+
):
|
325 |
if EVEN_N & EVEN_M:
|
326 |
if EVEN_HEADDIM:
|
327 |
tl.store(dv_ptrs, dv)
|
|
|
333 |
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
|
334 |
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
|
335 |
else:
|
336 |
+
tl.store(
|
337 |
+
dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)
|
338 |
+
)
|
339 |
+
tl.store(
|
340 |
+
dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)
|
341 |
+
)
|
342 |
+
|
343 |
|
344 |
@triton.jit
|
345 |
+
def _bwd_kernel_one_col_block(
|
346 |
+
start_n,
|
347 |
+
Q,
|
348 |
+
K,
|
349 |
+
V,
|
350 |
+
Bias,
|
351 |
+
DO,
|
352 |
+
DQ,
|
353 |
+
DK,
|
354 |
+
DV,
|
355 |
+
LSE,
|
356 |
+
D,
|
357 |
+
softmax_scale,
|
358 |
+
stride_qm,
|
359 |
+
stride_kn,
|
360 |
+
stride_vn,
|
361 |
+
stride_bm,
|
362 |
+
stride_dom,
|
363 |
+
stride_dqm,
|
364 |
+
stride_dkn,
|
365 |
+
stride_dvn,
|
366 |
+
seqlen_q,
|
367 |
+
seqlen_k,
|
368 |
+
headdim,
|
369 |
+
ATOMIC_ADD: tl.constexpr,
|
370 |
+
BIAS_TYPE: tl.constexpr,
|
371 |
+
IS_CAUSAL: tl.constexpr,
|
372 |
+
BLOCK_HEADDIM: tl.constexpr,
|
373 |
+
EVEN_M: tl.constexpr,
|
374 |
+
EVEN_N: tl.constexpr,
|
375 |
+
EVEN_HEADDIM: tl.constexpr,
|
376 |
+
BLOCK_M: tl.constexpr,
|
377 |
+
BLOCK_N: tl.constexpr,
|
378 |
+
):
|
379 |
begin_m = 0 if not IS_CAUSAL else start_n * BLOCK_N // BLOCK_M * BLOCK_M
|
380 |
offs_qm = begin_m + tl.arange(0, BLOCK_M)
|
381 |
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
|
|
386 |
v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
|
387 |
do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
|
388 |
dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
|
389 |
+
if BIAS_TYPE == "vector":
|
390 |
b_ptrs = Bias + offs_n
|
391 |
+
elif BIAS_TYPE == "matrix":
|
392 |
b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
|
393 |
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
394 |
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
395 |
if begin_m >= seqlen_q:
|
396 |
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
397 |
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
398 |
+
_bwd_store_dk_dv(
|
399 |
+
dk_ptrs,
|
400 |
+
dv_ptrs,
|
401 |
+
dk,
|
402 |
+
dv,
|
403 |
+
offs_n,
|
404 |
+
offs_d,
|
405 |
+
seqlen_k,
|
406 |
+
headdim,
|
407 |
+
EVEN_M=EVEN_M,
|
408 |
+
EVEN_N=EVEN_N,
|
409 |
+
EVEN_HEADDIM=EVEN_HEADDIM,
|
410 |
+
)
|
411 |
return
|
412 |
if EVEN_N & EVEN_M:
|
413 |
if EVEN_HEADDIM:
|
|
|
420 |
k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
421 |
v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
422 |
else:
|
423 |
+
k = tl.load(
|
424 |
+
k_ptrs,
|
425 |
+
mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
426 |
+
other=0.0,
|
427 |
+
)
|
428 |
+
v = tl.load(
|
429 |
+
v_ptrs,
|
430 |
+
mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
431 |
+
other=0.0,
|
432 |
+
)
|
433 |
num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
|
434 |
for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
|
435 |
start_m = tl.multiple_of(start_m, BLOCK_M)
|
|
|
439 |
elif EVEN_HEADDIM:
|
440 |
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
|
441 |
else:
|
442 |
+
q = tl.load(
|
443 |
+
q_ptrs,
|
444 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
445 |
+
other=0.0,
|
446 |
+
)
|
447 |
qk = tl.dot(q, k, trans_b=True)
|
448 |
if not EVEN_N:
|
449 |
+
qk = tl.where(offs_n[None, :] < seqlen_k, qk, float("-inf"))
|
450 |
if IS_CAUSAL:
|
451 |
+
qk = tl.where(offs_m_curr[:, None] >= offs_n[None, :], qk, float("-inf"))
|
452 |
+
if BIAS_TYPE != "none":
|
453 |
tl.debug_barrier()
|
454 |
+
if BIAS_TYPE == "vector":
|
455 |
if EVEN_N:
|
456 |
bias = tl.load(b_ptrs).to(tl.float32)
|
457 |
else:
|
458 |
+
bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(
|
459 |
+
tl.float32
|
460 |
+
)
|
461 |
bias = bias[None, :]
|
462 |
+
elif BIAS_TYPE == "matrix":
|
463 |
if EVEN_M & EVEN_N:
|
464 |
bias = tl.load(b_ptrs).to(tl.float32)
|
465 |
else:
|
466 |
+
bias = tl.load(
|
467 |
+
b_ptrs,
|
468 |
+
mask=(offs_m_curr[:, None] < seqlen_q)
|
469 |
+
& (offs_n[None, :] < seqlen_k),
|
470 |
+
other=0.0,
|
471 |
+
).to(tl.float32)
|
472 |
qk = qk * softmax_scale + bias
|
473 |
if not EVEN_M & EVEN_HEADDIM:
|
474 |
tl.debug_barrier()
|
475 |
lse_i = tl.load(LSE + offs_m_curr)
|
476 |
+
if BIAS_TYPE == "none":
|
477 |
p = tl.exp(qk * softmax_scale - lse_i[:, None])
|
478 |
else:
|
479 |
p = tl.exp(qk - lse_i[:, None])
|
480 |
if EVEN_M & EVEN_HEADDIM:
|
481 |
do = tl.load(do_ptrs)
|
482 |
else:
|
483 |
+
do = tl.load(
|
484 |
+
do_ptrs,
|
485 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
486 |
+
other=0.0,
|
487 |
+
)
|
488 |
dv += tl.dot(p.to(do.dtype), do, trans_a=True)
|
489 |
if not EVEN_M & EVEN_HEADDIM:
|
490 |
tl.debug_barrier()
|
|
|
498 |
tl.debug_barrier()
|
499 |
if not ATOMIC_ADD:
|
500 |
if EVEN_M & EVEN_HEADDIM:
|
501 |
+
dq = tl.load(dq_ptrs, eviction_policy="evict_last")
|
502 |
dq += tl.dot(ds, k)
|
503 |
+
tl.store(dq_ptrs, dq, eviction_policy="evict_last")
|
504 |
elif EVEN_HEADDIM:
|
505 |
+
dq = tl.load(
|
506 |
+
dq_ptrs,
|
507 |
+
mask=offs_m_curr[:, None] < seqlen_q,
|
508 |
+
other=0.0,
|
509 |
+
eviction_policy="evict_last",
|
510 |
+
)
|
511 |
dq += tl.dot(ds, k)
|
512 |
+
tl.store(
|
513 |
+
dq_ptrs,
|
514 |
+
dq,
|
515 |
+
mask=offs_m_curr[:, None] < seqlen_q,
|
516 |
+
eviction_policy="evict_last",
|
517 |
+
)
|
518 |
else:
|
519 |
+
dq = tl.load(
|
520 |
+
dq_ptrs,
|
521 |
+
mask=(offs_m_curr[:, None] < seqlen_q)
|
522 |
+
& (offs_d[None, :] < headdim),
|
523 |
+
other=0.0,
|
524 |
+
eviction_policy="evict_last",
|
525 |
+
)
|
526 |
dq += tl.dot(ds, k)
|
527 |
+
tl.store(
|
528 |
+
dq_ptrs,
|
529 |
+
dq,
|
530 |
+
mask=(offs_m_curr[:, None] < seqlen_q)
|
531 |
+
& (offs_d[None, :] < headdim),
|
532 |
+
eviction_policy="evict_last",
|
533 |
+
)
|
534 |
else:
|
535 |
dq = tl.dot(ds, k)
|
536 |
if EVEN_M & EVEN_HEADDIM:
|
|
|
538 |
elif EVEN_HEADDIM:
|
539 |
tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
|
540 |
else:
|
541 |
+
tl.atomic_add(
|
542 |
+
dq_ptrs,
|
543 |
+
dq,
|
544 |
+
mask=(offs_m_curr[:, None] < seqlen_q)
|
545 |
+
& (offs_d[None, :] < headdim),
|
546 |
+
)
|
547 |
dq_ptrs += BLOCK_M * stride_dqm
|
548 |
q_ptrs += BLOCK_M * stride_qm
|
549 |
do_ptrs += BLOCK_M * stride_dom
|
550 |
+
if BIAS_TYPE == "matrix":
|
551 |
b_ptrs += BLOCK_M * stride_bm
|
552 |
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
553 |
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
554 |
+
_bwd_store_dk_dv(
|
555 |
+
dk_ptrs,
|
556 |
+
dv_ptrs,
|
557 |
+
dk,
|
558 |
+
dv,
|
559 |
+
offs_n,
|
560 |
+
offs_d,
|
561 |
+
seqlen_k,
|
562 |
+
headdim,
|
563 |
+
EVEN_M=EVEN_M,
|
564 |
+
EVEN_N=EVEN_N,
|
565 |
+
EVEN_HEADDIM=EVEN_HEADDIM,
|
566 |
+
)
|
567 |
+
|
568 |
|
569 |
def init_to_zero(name):
|
570 |
return lambda nargs: nargs[name].zero_()
|
571 |
|
572 |
+
|
573 |
+
@triton.autotune(
|
574 |
+
configs=[
|
575 |
+
triton.Config(
|
576 |
+
{"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False},
|
577 |
+
num_warps=8,
|
578 |
+
num_stages=1,
|
579 |
+
pre_hook=init_to_zero("DQ"),
|
580 |
+
),
|
581 |
+
triton.Config(
|
582 |
+
{"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True},
|
583 |
+
num_warps=8,
|
584 |
+
num_stages=1,
|
585 |
+
pre_hook=init_to_zero("DQ"),
|
586 |
+
),
|
587 |
+
],
|
588 |
+
key=[
|
589 |
+
"CACHE_KEY_SEQLEN_Q",
|
590 |
+
"CACHE_KEY_SEQLEN_K",
|
591 |
+
"BIAS_TYPE",
|
592 |
+
"IS_CAUSAL",
|
593 |
+
"BLOCK_HEADDIM",
|
594 |
+
],
|
595 |
+
)
|
596 |
+
@triton.heuristics(
|
597 |
+
{
|
598 |
+
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
599 |
+
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
|
600 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
601 |
+
}
|
602 |
+
)
|
603 |
@triton.jit
|
604 |
+
def _bwd_kernel(
|
605 |
+
Q,
|
606 |
+
K,
|
607 |
+
V,
|
608 |
+
Bias,
|
609 |
+
DO,
|
610 |
+
DQ,
|
611 |
+
DK,
|
612 |
+
DV,
|
613 |
+
LSE,
|
614 |
+
D,
|
615 |
+
softmax_scale,
|
616 |
+
stride_qb,
|
617 |
+
stride_qh,
|
618 |
+
stride_qm,
|
619 |
+
stride_kb,
|
620 |
+
stride_kh,
|
621 |
+
stride_kn,
|
622 |
+
stride_vb,
|
623 |
+
stride_vh,
|
624 |
+
stride_vn,
|
625 |
+
stride_bb,
|
626 |
+
stride_bh,
|
627 |
+
stride_bm,
|
628 |
+
stride_dob,
|
629 |
+
stride_doh,
|
630 |
+
stride_dom,
|
631 |
+
stride_dqb,
|
632 |
+
stride_dqh,
|
633 |
+
stride_dqm,
|
634 |
+
stride_dkb,
|
635 |
+
stride_dkh,
|
636 |
+
stride_dkn,
|
637 |
+
stride_dvb,
|
638 |
+
stride_dvh,
|
639 |
+
stride_dvn,
|
640 |
+
nheads,
|
641 |
+
seqlen_q,
|
642 |
+
seqlen_k,
|
643 |
+
seqlen_q_rounded,
|
644 |
+
headdim,
|
645 |
+
CACHE_KEY_SEQLEN_Q,
|
646 |
+
CACHE_KEY_SEQLEN_K,
|
647 |
+
BIAS_TYPE: tl.constexpr,
|
648 |
+
IS_CAUSAL: tl.constexpr,
|
649 |
+
BLOCK_HEADDIM: tl.constexpr,
|
650 |
+
SEQUENCE_PARALLEL: tl.constexpr,
|
651 |
+
EVEN_M: tl.constexpr,
|
652 |
+
EVEN_N: tl.constexpr,
|
653 |
+
EVEN_HEADDIM: tl.constexpr,
|
654 |
+
BLOCK_M: tl.constexpr,
|
655 |
+
BLOCK_N: tl.constexpr,
|
656 |
+
):
|
657 |
off_hb = tl.program_id(1)
|
658 |
off_b = off_hb // nheads
|
659 |
off_h = off_hb % nheads
|
|
|
664 |
DQ += off_b * stride_dqb + off_h * stride_dqh
|
665 |
DK += off_b * stride_dkb + off_h * stride_dkh
|
666 |
DV += off_b * stride_dvb + off_h * stride_dvh
|
667 |
+
if BIAS_TYPE != "none":
|
668 |
Bias += off_b * stride_bb + off_h * stride_bh
|
669 |
D += off_hb * seqlen_q_rounded
|
670 |
LSE += off_hb * seqlen_q_rounded
|
671 |
if not SEQUENCE_PARALLEL:
|
672 |
num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
|
673 |
for start_n in range(0, num_block_n):
|
674 |
+
_bwd_kernel_one_col_block(
|
675 |
+
start_n,
|
676 |
+
Q,
|
677 |
+
K,
|
678 |
+
V,
|
679 |
+
Bias,
|
680 |
+
DO,
|
681 |
+
DQ,
|
682 |
+
DK,
|
683 |
+
DV,
|
684 |
+
LSE,
|
685 |
+
D,
|
686 |
+
softmax_scale,
|
687 |
+
stride_qm,
|
688 |
+
stride_kn,
|
689 |
+
stride_vn,
|
690 |
+
stride_bm,
|
691 |
+
stride_dom,
|
692 |
+
stride_dqm,
|
693 |
+
stride_dkn,
|
694 |
+
stride_dvn,
|
695 |
+
seqlen_q,
|
696 |
+
seqlen_k,
|
697 |
+
headdim,
|
698 |
+
ATOMIC_ADD=False,
|
699 |
+
BIAS_TYPE=BIAS_TYPE,
|
700 |
+
IS_CAUSAL=IS_CAUSAL,
|
701 |
+
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
702 |
+
EVEN_M=EVEN_M,
|
703 |
+
EVEN_N=EVEN_N,
|
704 |
+
EVEN_HEADDIM=EVEN_HEADDIM,
|
705 |
+
BLOCK_M=BLOCK_M,
|
706 |
+
BLOCK_N=BLOCK_N,
|
707 |
+
)
|
708 |
else:
|
709 |
start_n = tl.program_id(0)
|
710 |
+
_bwd_kernel_one_col_block(
|
711 |
+
start_n,
|
712 |
+
Q,
|
713 |
+
K,
|
714 |
+
V,
|
715 |
+
Bias,
|
716 |
+
DO,
|
717 |
+
DQ,
|
718 |
+
DK,
|
719 |
+
DV,
|
720 |
+
LSE,
|
721 |
+
D,
|
722 |
+
softmax_scale,
|
723 |
+
stride_qm,
|
724 |
+
stride_kn,
|
725 |
+
stride_vn,
|
726 |
+
stride_bm,
|
727 |
+
stride_dom,
|
728 |
+
stride_dqm,
|
729 |
+
stride_dkn,
|
730 |
+
stride_dvn,
|
731 |
+
seqlen_q,
|
732 |
+
seqlen_k,
|
733 |
+
headdim,
|
734 |
+
ATOMIC_ADD=True,
|
735 |
+
BIAS_TYPE=BIAS_TYPE,
|
736 |
+
IS_CAUSAL=IS_CAUSAL,
|
737 |
+
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
738 |
+
EVEN_M=EVEN_M,
|
739 |
+
EVEN_N=EVEN_N,
|
740 |
+
EVEN_HEADDIM=EVEN_HEADDIM,
|
741 |
+
BLOCK_M=BLOCK_M,
|
742 |
+
BLOCK_N=BLOCK_N,
|
743 |
+
)
|
744 |
+
|
745 |
|
746 |
def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
747 |
(batch, seqlen_q, nheads, d) = q.shape
|
748 |
(_, seqlen_k, _, _) = k.shape
|
749 |
assert k.shape == (batch, seqlen_k, nheads, d)
|
750 |
assert v.shape == (batch, seqlen_k, nheads, d)
|
751 |
+
assert d <= 128, "FlashAttention only support head dimensions up to 128"
|
752 |
+
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same type"
|
753 |
+
assert q.dtype in [torch.float16, torch.bfloat16], "Only support fp16 and bf16"
|
754 |
assert q.is_cuda and k.is_cuda and v.is_cuda
|
755 |
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
756 |
has_bias = bias is not None
|
757 |
+
bias_type = "none"
|
758 |
if has_bias:
|
759 |
assert bias.dtype in [q.dtype, torch.float]
|
760 |
assert bias.is_cuda
|
|
|
762 |
if bias.stride(-1) != 1:
|
763 |
bias = bias.contiguous()
|
764 |
if bias.shape[2:] == (1, seqlen_k):
|
765 |
+
bias_type = "vector"
|
766 |
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
767 |
+
bias_type = "matrix"
|
768 |
else:
|
769 |
+
raise RuntimeError(
|
770 |
+
"Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)"
|
771 |
+
)
|
772 |
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
773 |
+
bias_strides = (
|
774 |
+
(bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
775 |
+
)
|
776 |
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
777 |
+
lse = torch.empty(
|
778 |
+
(batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32
|
779 |
+
)
|
780 |
+
tmp = torch.empty(
|
781 |
+
(batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32
|
782 |
+
)
|
783 |
o = torch.empty_like(q)
|
784 |
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
785 |
BLOCK = 128
|
786 |
num_warps = 4 if d <= 64 else 8
|
787 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
|
788 |
+
_fwd_kernel[grid](
|
789 |
+
q,
|
790 |
+
k,
|
791 |
+
v,
|
792 |
+
bias,
|
793 |
+
o,
|
794 |
+
lse,
|
795 |
+
tmp,
|
796 |
+
softmax_scale,
|
797 |
+
q.stride(0),
|
798 |
+
q.stride(2),
|
799 |
+
q.stride(1),
|
800 |
+
k.stride(0),
|
801 |
+
k.stride(2),
|
802 |
+
k.stride(1),
|
803 |
+
v.stride(0),
|
804 |
+
v.stride(2),
|
805 |
+
v.stride(1),
|
806 |
+
*bias_strides,
|
807 |
+
o.stride(0),
|
808 |
+
o.stride(2),
|
809 |
+
o.stride(1),
|
810 |
+
nheads,
|
811 |
+
seqlen_q,
|
812 |
+
seqlen_k,
|
813 |
+
seqlen_q_rounded,
|
814 |
+
d,
|
815 |
+
seqlen_q // 32,
|
816 |
+
seqlen_k // 32,
|
817 |
+
bias_type,
|
818 |
+
causal,
|
819 |
+
BLOCK_HEADDIM,
|
820 |
+
BLOCK_M=BLOCK,
|
821 |
+
BLOCK_N=BLOCK,
|
822 |
+
num_warps=num_warps,
|
823 |
+
num_stages=1
|
824 |
+
)
|
825 |
return (o, lse, softmax_scale)
|
826 |
|
827 |
+
|
828 |
+
def _flash_attn_backward(
|
829 |
+
do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None
|
830 |
+
):
|
831 |
if do.stride(-1) != 1:
|
832 |
do = do.contiguous()
|
833 |
(batch, seqlen_q, nheads, d) = q.shape
|
|
|
841 |
dq_accum = torch.empty_like(q, dtype=torch.float32)
|
842 |
delta = torch.empty_like(lse)
|
843 |
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
844 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
|
845 |
+
_bwd_preprocess_do_o_dot[grid](
|
846 |
+
o,
|
847 |
+
do,
|
848 |
+
delta,
|
849 |
+
o.stride(0),
|
850 |
+
o.stride(2),
|
851 |
+
o.stride(1),
|
852 |
+
do.stride(0),
|
853 |
+
do.stride(2),
|
854 |
+
do.stride(1),
|
855 |
+
nheads,
|
856 |
+
seqlen_q,
|
857 |
+
seqlen_q_rounded,
|
858 |
+
d,
|
859 |
+
BLOCK_M=128,
|
860 |
+
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
861 |
+
)
|
862 |
has_bias = bias is not None
|
863 |
+
bias_type = "none"
|
864 |
if has_bias:
|
865 |
assert bias.dtype in [q.dtype, torch.float]
|
866 |
assert bias.is_cuda
|
867 |
assert bias.dim() == 4
|
868 |
assert bias.stride(-1) == 1
|
869 |
if bias.shape[2:] == (1, seqlen_k):
|
870 |
+
bias_type = "vector"
|
871 |
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
872 |
+
bias_type = "matrix"
|
873 |
else:
|
874 |
+
raise RuntimeError(
|
875 |
+
"Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)"
|
876 |
+
)
|
877 |
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
878 |
+
bias_strides = (
|
879 |
+
(bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
880 |
+
)
|
881 |
+
grid = lambda META: (
|
882 |
+
triton.cdiv(seqlen_k, META["BLOCK_N"]) if META["SEQUENCE_PARALLEL"] else 1,
|
883 |
+
batch * nheads,
|
884 |
+
)
|
885 |
+
_bwd_kernel[grid](
|
886 |
+
q,
|
887 |
+
k,
|
888 |
+
v,
|
889 |
+
bias,
|
890 |
+
do,
|
891 |
+
dq_accum,
|
892 |
+
dk,
|
893 |
+
dv,
|
894 |
+
lse,
|
895 |
+
delta,
|
896 |
+
softmax_scale,
|
897 |
+
q.stride(0),
|
898 |
+
q.stride(2),
|
899 |
+
q.stride(1),
|
900 |
+
k.stride(0),
|
901 |
+
k.stride(2),
|
902 |
+
k.stride(1),
|
903 |
+
v.stride(0),
|
904 |
+
v.stride(2),
|
905 |
+
v.stride(1),
|
906 |
+
*bias_strides,
|
907 |
+
do.stride(0),
|
908 |
+
do.stride(2),
|
909 |
+
do.stride(1),
|
910 |
+
dq_accum.stride(0),
|
911 |
+
dq_accum.stride(2),
|
912 |
+
dq_accum.stride(1),
|
913 |
+
dk.stride(0),
|
914 |
+
dk.stride(2),
|
915 |
+
dk.stride(1),
|
916 |
+
dv.stride(0),
|
917 |
+
dv.stride(2),
|
918 |
+
dv.stride(1),
|
919 |
+
nheads,
|
920 |
+
seqlen_q,
|
921 |
+
seqlen_k,
|
922 |
+
seqlen_q_rounded,
|
923 |
+
d,
|
924 |
+
seqlen_q // 32,
|
925 |
+
seqlen_k // 32,
|
926 |
+
bias_type,
|
927 |
+
causal,
|
928 |
+
BLOCK_HEADDIM
|
929 |
+
)
|
930 |
dq.copy_(dq_accum)
|
931 |
|
932 |
+
|
933 |
class FlashAttnQKVPackedFunc(torch.autograd.Function):
|
934 |
|
935 |
@staticmethod
|
936 |
def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
|
937 |
"""
|
938 |
+
qkv: (batch, seqlen, 3, nheads, headdim)
|
939 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
|
940 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
|
941 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
|
942 |
"""
|
943 |
if qkv.stride(-1) != 1:
|
944 |
qkv = qkv.contiguous()
|
945 |
+
(o, lse, ctx.softmax_scale) = _flash_attn_forward(
|
946 |
+
qkv[:, :, 0],
|
947 |
+
qkv[:, :, 1],
|
948 |
+
qkv[:, :, 2],
|
949 |
+
bias=bias,
|
950 |
+
causal=causal,
|
951 |
+
softmax_scale=softmax_scale,
|
952 |
+
)
|
953 |
ctx.save_for_backward(qkv, o, lse, bias)
|
954 |
ctx.causal = causal
|
955 |
return o
|
|
|
957 |
@staticmethod
|
958 |
def backward(ctx, do):
|
959 |
(qkv, o, lse, bias) = ctx.saved_tensors
|
960 |
+
assert not ctx.needs_input_grad[
|
961 |
+
1
|
962 |
+
], "FlashAttention does not support bias gradient yet"
|
963 |
with torch.inference_mode():
|
964 |
dqkv = torch.empty_like(qkv)
|
965 |
+
_flash_attn_backward(
|
966 |
+
do,
|
967 |
+
qkv[:, :, 0],
|
968 |
+
qkv[:, :, 1],
|
969 |
+
qkv[:, :, 2],
|
970 |
+
o,
|
971 |
+
lse,
|
972 |
+
dqkv[:, :, 0],
|
973 |
+
dqkv[:, :, 1],
|
974 |
+
dqkv[:, :, 2],
|
975 |
+
bias=bias,
|
976 |
+
causal=ctx.causal,
|
977 |
+
softmax_scale=ctx.softmax_scale,
|
978 |
+
)
|
979 |
return (dqkv, None, None, None)
|
980 |
+
|
981 |
+
|
982 |
flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
|
983 |
|
984 |
+
|
985 |
class FlashAttnKVPackedFunc(torch.autograd.Function):
|
986 |
|
987 |
@staticmethod
|
988 |
def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
|
989 |
"""
|
990 |
+
q: (batch, seqlen_q, nheads, headdim)
|
991 |
+
kv: (batch, seqlen_k, 2, nheads, headdim)
|
992 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
993 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
994 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
995 |
"""
|
996 |
(q, kv) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
|
997 |
+
(o, lse, ctx.softmax_scale) = _flash_attn_forward(
|
998 |
+
q,
|
999 |
+
kv[:, :, 0],
|
1000 |
+
kv[:, :, 1],
|
1001 |
+
bias=bias,
|
1002 |
+
causal=causal,
|
1003 |
+
softmax_scale=softmax_scale,
|
1004 |
+
)
|
1005 |
ctx.save_for_backward(q, kv, o, lse, bias)
|
1006 |
ctx.causal = causal
|
1007 |
return o
|
|
|
1010 |
def backward(ctx, do):
|
1011 |
(q, kv, o, lse, bias) = ctx.saved_tensors
|
1012 |
if len(ctx.needs_input_grad) >= 3:
|
1013 |
+
assert not ctx.needs_input_grad[
|
1014 |
+
2
|
1015 |
+
], "FlashAttention does not support bias gradient yet"
|
1016 |
with torch.inference_mode():
|
1017 |
dq = torch.empty_like(q)
|
1018 |
dkv = torch.empty_like(kv)
|
1019 |
+
_flash_attn_backward(
|
1020 |
+
do,
|
1021 |
+
q,
|
1022 |
+
kv[:, :, 0],
|
1023 |
+
kv[:, :, 1],
|
1024 |
+
o,
|
1025 |
+
lse,
|
1026 |
+
dq,
|
1027 |
+
dkv[:, :, 0],
|
1028 |
+
dkv[:, :, 1],
|
1029 |
+
bias=bias,
|
1030 |
+
causal=ctx.causal,
|
1031 |
+
softmax_scale=ctx.softmax_scale,
|
1032 |
+
)
|
1033 |
return (dq, dkv, None, None, None)
|
1034 |
+
|
1035 |
+
|
1036 |
flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
|
1037 |
|
1038 |
+
|
1039 |
class FlashAttnFunc(torch.autograd.Function):
|
1040 |
|
1041 |
@staticmethod
|
1042 |
def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
|
1043 |
"""
|
1044 |
+
q: (batch_size, seqlen_q, nheads, headdim)
|
1045 |
+
k, v: (batch_size, seqlen_k, nheads, headdim)
|
1046 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
1047 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
1048 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
1049 |
"""
|
1050 |
(q, k, v) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
|
1051 |
+
(o, lse, ctx.softmax_scale) = _flash_attn_forward(
|
1052 |
+
q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale
|
1053 |
+
)
|
1054 |
ctx.save_for_backward(q, k, v, o, lse, bias)
|
1055 |
ctx.causal = causal
|
1056 |
return o
|
|
|
1058 |
@staticmethod
|
1059 |
def backward(ctx, do):
|
1060 |
(q, k, v, o, lse, bias) = ctx.saved_tensors
|
1061 |
+
assert not ctx.needs_input_grad[
|
1062 |
+
3
|
1063 |
+
], "FlashAttention does not support bias gradient yet"
|
1064 |
with torch.inference_mode():
|
1065 |
dq = torch.empty_like(q)
|
1066 |
dk = torch.empty_like(k)
|
1067 |
dv = torch.empty_like(v)
|
1068 |
+
_flash_attn_backward(
|
1069 |
+
do,
|
1070 |
+
q,
|
1071 |
+
k,
|
1072 |
+
v,
|
1073 |
+
o,
|
1074 |
+
lse,
|
1075 |
+
dq,
|
1076 |
+
dk,
|
1077 |
+
dv,
|
1078 |
+
bias=bias,
|
1079 |
+
causal=ctx.causal,
|
1080 |
+
softmax_scale=ctx.softmax_scale,
|
1081 |
+
)
|
1082 |
return (dq, dk, dv, None, None, None)
|
1083 |
+
|
1084 |
+
|
1085 |
+
flash_attn_func = FlashAttnFunc.apply
|
hf_prefixlm_converter.py
CHANGED
@@ -6,6 +6,7 @@ Causal LM to convert it to a Prefix LM.
|
|
6 |
Prefix LMs accepts a `bidirectional_mask` input in `forward`
|
7 |
and treat the input prompt as the prefix in `generate`.
|
8 |
"""
|
|
|
9 |
from types import MethodType
|
10 |
from typing import Any, List, MutableMapping, Optional, Tuple, Union
|
11 |
import torch
|
|
|
6 |
Prefix LMs accepts a `bidirectional_mask` input in `forward`
|
7 |
and treat the input prompt as the prefix in `generate`.
|
8 |
"""
|
9 |
+
|
10 |
from types import MethodType
|
11 |
from typing import Any, List, MutableMapping, Optional, Tuple, Union
|
12 |
import torch
|
meta_init_context.py
CHANGED
@@ -3,8 +3,9 @@ from typing import Any, Callable, Optional
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
|
|
|
6 |
@contextmanager
|
7 |
-
def init_empty_weights(include_buffers: bool=False):
|
8 |
"""Meta initialization context manager.
|
9 |
|
10 |
A context manager under which models are initialized with all parameters
|
@@ -31,11 +32,12 @@ def init_empty_weights(include_buffers: bool=False):
|
|
31 |
|
32 |
</Tip>
|
33 |
"""
|
34 |
-
with init_on_device(torch.device(
|
35 |
yield f
|
36 |
|
|
|
37 |
@contextmanager
|
38 |
-
def init_on_device(device: torch.device, include_buffers: bool=False):
|
39 |
"""Device initialization context manager.
|
40 |
|
41 |
A context manager under which models are initialized with all parameters
|
@@ -58,7 +60,9 @@ def init_on_device(device: torch.device, include_buffers: bool=False):
|
|
58 |
if include_buffers:
|
59 |
old_register_buffer = nn.Module.register_buffer
|
60 |
|
61 |
-
def register_empty_parameter(
|
|
|
|
|
62 |
old_register_parameter(self, name, param)
|
63 |
if param is not None:
|
64 |
parameter = self._parameters[name]
|
@@ -67,33 +71,51 @@ def init_on_device(device: torch.device, include_buffers: bool=False):
|
|
67 |
kwargs = parameter.__dict__
|
68 |
self._parameters[name] = param_cls(parameter.to(device), **kwargs)
|
69 |
|
70 |
-
def register_empty_buffer(
|
|
|
|
|
|
|
|
|
|
|
71 |
old_register_buffer(self, name, tensor, persistent=persistent)
|
72 |
if tensor is not None:
|
73 |
named_buffer = self._buffers[name]
|
74 |
assert named_buffer is not None
|
75 |
self._buffers[name] = named_buffer.to(device)
|
|
|
76 |
if include_buffers:
|
77 |
-
tensor_constructors_to_patch = {
|
|
|
|
|
|
|
78 |
else:
|
79 |
tensor_constructors_to_patch = {}
|
80 |
|
81 |
def patch_tensor_constructor(fn: Callable):
|
82 |
|
83 |
def wrapper(*args: Any, **kwargs: Any):
|
84 |
-
kwargs[
|
85 |
return fn(*args, **kwargs)
|
|
|
86 |
return wrapper
|
|
|
87 |
try:
|
88 |
nn.Module.register_parameter = register_empty_parameter
|
89 |
if include_buffers:
|
90 |
nn.Module.register_buffer = register_empty_buffer
|
91 |
for torch_function_name in tensor_constructors_to_patch.keys():
|
92 |
-
setattr(
|
|
|
|
|
|
|
|
|
93 |
yield
|
94 |
finally:
|
95 |
nn.Module.register_parameter = old_register_parameter
|
96 |
if include_buffers:
|
97 |
nn.Module.register_buffer = old_register_buffer
|
98 |
-
for (
|
99 |
-
|
|
|
|
|
|
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
|
6 |
+
|
7 |
@contextmanager
|
8 |
+
def init_empty_weights(include_buffers: bool = False):
|
9 |
"""Meta initialization context manager.
|
10 |
|
11 |
A context manager under which models are initialized with all parameters
|
|
|
32 |
|
33 |
</Tip>
|
34 |
"""
|
35 |
+
with init_on_device(torch.device("meta"), include_buffers=include_buffers) as f:
|
36 |
yield f
|
37 |
|
38 |
+
|
39 |
@contextmanager
|
40 |
+
def init_on_device(device: torch.device, include_buffers: bool = False):
|
41 |
"""Device initialization context manager.
|
42 |
|
43 |
A context manager under which models are initialized with all parameters
|
|
|
60 |
if include_buffers:
|
61 |
old_register_buffer = nn.Module.register_buffer
|
62 |
|
63 |
+
def register_empty_parameter(
|
64 |
+
self: torch.nn.Module, name: str, param: Optional[torch.nn.Parameter]
|
65 |
+
):
|
66 |
old_register_parameter(self, name, param)
|
67 |
if param is not None:
|
68 |
parameter = self._parameters[name]
|
|
|
71 |
kwargs = parameter.__dict__
|
72 |
self._parameters[name] = param_cls(parameter.to(device), **kwargs)
|
73 |
|
74 |
+
def register_empty_buffer(
|
75 |
+
self: torch.nn.Module,
|
76 |
+
name: str,
|
77 |
+
tensor: Optional[torch.Tensor],
|
78 |
+
persistent: bool = True,
|
79 |
+
):
|
80 |
old_register_buffer(self, name, tensor, persistent=persistent)
|
81 |
if tensor is not None:
|
82 |
named_buffer = self._buffers[name]
|
83 |
assert named_buffer is not None
|
84 |
self._buffers[name] = named_buffer.to(device)
|
85 |
+
|
86 |
if include_buffers:
|
87 |
+
tensor_constructors_to_patch = {
|
88 |
+
torch_function_name: getattr(torch, torch_function_name)
|
89 |
+
for torch_function_name in ["empty", "zeros", "ones", "full"]
|
90 |
+
}
|
91 |
else:
|
92 |
tensor_constructors_to_patch = {}
|
93 |
|
94 |
def patch_tensor_constructor(fn: Callable):
|
95 |
|
96 |
def wrapper(*args: Any, **kwargs: Any):
|
97 |
+
kwargs["device"] = device
|
98 |
return fn(*args, **kwargs)
|
99 |
+
|
100 |
return wrapper
|
101 |
+
|
102 |
try:
|
103 |
nn.Module.register_parameter = register_empty_parameter
|
104 |
if include_buffers:
|
105 |
nn.Module.register_buffer = register_empty_buffer
|
106 |
for torch_function_name in tensor_constructors_to_patch.keys():
|
107 |
+
setattr(
|
108 |
+
torch,
|
109 |
+
torch_function_name,
|
110 |
+
patch_tensor_constructor(getattr(torch, torch_function_name)),
|
111 |
+
)
|
112 |
yield
|
113 |
finally:
|
114 |
nn.Module.register_parameter = old_register_parameter
|
115 |
if include_buffers:
|
116 |
nn.Module.register_buffer = old_register_buffer
|
117 |
+
for (
|
118 |
+
torch_function_name,
|
119 |
+
old_torch_function,
|
120 |
+
) in tensor_constructors_to_patch.items():
|
121 |
+
setattr(torch, torch_function_name, old_torch_function)
|
model-00001-of-00004.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4933505648
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9b11a607384278e4b241042d9daf5bf81228e712c14512e4b9fc8a456e3447b
|
3 |
size 4933505648
|
model-00002-of-00004.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4967831752
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1a3ca63ac33e1f432ef6f9fa53e04912eb8c8a2093991d07fd8bce6a34708bf
|
3 |
size 4967831752
|
model-00003-of-00004.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4967781776
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f591ec5d6445a4193146bf8782173219a1d13bb1f004468116e6d4e8276efa4
|
3 |
size 4967781776
|
model-00004-of-00004.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 134242752
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56a7ffbb1197228d6e4cb970755f61ec74925294945602c76f5a8584e4da7952
|
3 |
size 134242752
|
modeling_mpt.py
CHANGED
@@ -2,24 +2,42 @@
|
|
2 |
|
3 |
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
4 |
"""
|
|
|
|
|
5 |
import math
|
6 |
import warnings
|
7 |
from typing import Any, Dict, List, Mapping, MutableMapping, Optional, Tuple, Union
|
8 |
import torch
|
9 |
import torch.nn as nn
|
10 |
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from transformers import PreTrainedModel, PreTrainedTokenizerBase
|
12 |
from transformers.modeling_outputs import (
|
13 |
BaseModelOutputWithPast,
|
14 |
CausalLMOutputWithPast,
|
15 |
)
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
22 |
)
|
|
|
23 |
from .blocks import MPTBlock
|
24 |
from .custom_embedding import SharedEmbedding
|
25 |
from .fc import FC_CLASS_REGISTRY as FC_CLASS_REGISTRY
|
@@ -45,22 +63,216 @@ import logging
|
|
45 |
log = logging.getLogger(__name__)
|
46 |
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
class MPTPreTrainedModel(PreTrainedModel):
|
49 |
config_class = MPTConfig
|
50 |
base_model_prefix = "model"
|
51 |
_no_split_modules = ["MPTBlock"]
|
|
|
52 |
supports_gradient_checkpointing = True
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
or isinstance(module, MultiheadAttention)
|
58 |
-
or isinstance(module, MultiQueryAttention)
|
59 |
-
):
|
60 |
-
module.gradient_checkpointing = value
|
61 |
|
62 |
|
63 |
class MPTModel(MPTPreTrainedModel):
|
|
|
64 |
def __init__(self, config: MPTConfig):
|
65 |
config._validate_config()
|
66 |
super().__init__(config)
|
@@ -98,6 +310,18 @@ class MPTModel(MPTPreTrainedModel):
|
|
98 |
]
|
99 |
)
|
100 |
self.norm_f = norm_class(config.d_model, device=config.init_device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
if config.init_device != "meta":
|
102 |
log.info(
|
103 |
f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.'
|
@@ -118,18 +342,18 @@ class MPTModel(MPTPreTrainedModel):
|
|
118 |
if config.no_bias:
|
119 |
for module in self.modules():
|
120 |
if hasattr(module, "bias") and isinstance(module.bias, nn.Parameter):
|
121 |
-
log.info(f"Removing bias
|
122 |
module.register_parameter("bias", None)
|
123 |
if hasattr(module, "use_bias"):
|
124 |
-
log.info(f"Setting use_bias=False for {module}.")
|
125 |
module.use_bias = False
|
126 |
log.debug(self)
|
127 |
log.debug(f"Using {self.config.init_config['name']} initialization.")
|
128 |
|
129 |
-
def get_input_embeddings(self) -> nn.Embedding:
|
130 |
return self.wte
|
131 |
|
132 |
-
def set_input_embeddings(self, value: nn.Embedding) -> None:
|
133 |
self.wte = value
|
134 |
|
135 |
@torch.no_grad()
|
@@ -167,7 +391,9 @@ class MPTModel(MPTPreTrainedModel):
|
|
167 |
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
|
168 |
if self.attn_uses_sequence_id and sequence_id is not None:
|
169 |
assert isinstance(attn_bias, torch.Tensor)
|
170 |
-
attn_bias =
|
|
|
|
|
171 |
if attention_mask is not None:
|
172 |
s_k = attention_mask.shape[-1]
|
173 |
if attn_bias is None:
|
@@ -184,7 +410,7 @@ class MPTModel(MPTPreTrainedModel):
|
|
184 |
attn_bias = attn_bias.masked_fill(
|
185 |
~attention_mask.view(-1, 1, 1, s_k), min_val
|
186 |
)
|
187 |
-
return (attn_bias,
|
188 |
|
189 |
def _apply_prefix_mask(
|
190 |
self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor
|
@@ -211,25 +437,9 @@ class MPTModel(MPTPreTrainedModel):
|
|
211 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
212 |
return attn_bias
|
213 |
|
214 |
-
def _apply_sequence_id(
|
215 |
-
self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor
|
216 |
-
) -> torch.Tensor:
|
217 |
-
seq_len = sequence_id.shape[-1]
|
218 |
-
if seq_len > self.config.max_seq_len:
|
219 |
-
raise ValueError(
|
220 |
-
f"sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}"
|
221 |
-
)
|
222 |
-
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
223 |
-
cannot_attend = torch.logical_not(
|
224 |
-
torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))
|
225 |
-
).unsqueeze(1)
|
226 |
-
min_val = torch.finfo(attn_bias.dtype).min
|
227 |
-
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
228 |
-
return attn_bias
|
229 |
-
|
230 |
def forward(
|
231 |
self,
|
232 |
-
input_ids: torch.LongTensor,
|
233 |
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
234 |
attention_mask: Optional[torch.ByteTensor] = None,
|
235 |
prefix_mask: Optional[torch.ByteTensor] = None,
|
@@ -244,9 +454,6 @@ class MPTModel(MPTPreTrainedModel):
|
|
244 |
return_dict if return_dict is not None else self.config.return_dict
|
245 |
)
|
246 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
247 |
-
if self.gradient_checkpointing and self.training:
|
248 |
-
if use_cache:
|
249 |
-
use_cache = False
|
250 |
if attention_mask is not None:
|
251 |
attention_mask = attention_mask.bool()
|
252 |
if prefix_mask is not None:
|
@@ -272,8 +479,6 @@ class MPTModel(MPTPreTrainedModel):
|
|
272 |
raise ValueError(
|
273 |
"prefix_mask is a required argument when MPT is configured with prefix_lm=True."
|
274 |
)
|
275 |
-
if inputs_embeds is not None:
|
276 |
-
raise NotImplementedError("inputs_embeds is not implemented for MPT.")
|
277 |
if self.training:
|
278 |
if self.attn_uses_sequence_id and sequence_id is None:
|
279 |
raise ValueError(
|
@@ -285,53 +490,78 @@ class MPTModel(MPTPreTrainedModel):
|
|
285 |
"MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. "
|
286 |
+ "This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True."
|
287 |
)
|
288 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
assert (
|
290 |
S <= self.config.max_seq_len
|
291 |
), f"Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}"
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
if past_key_values
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
if S + past_position > self.config.max_seq_len:
|
305 |
raise ValueError(
|
306 |
f"Cannot forward input with past sequence length {past_position} and current sequence length "
|
307 |
+ f"{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}."
|
308 |
)
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
|
|
|
|
|
|
|
|
|
|
335 |
if self.embedding_fraction == 1:
|
336 |
x = self.emb_drop(x)
|
337 |
else:
|
@@ -347,12 +577,36 @@ class MPTModel(MPTPreTrainedModel):
|
|
347 |
prefix_mask=prefix_mask,
|
348 |
sequence_id=sequence_id,
|
349 |
)
|
350 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
presents = () if use_cache else None
|
352 |
if use_cache and past_key_values is None:
|
353 |
past_key_values = [() for _ in range(self.config.n_layers)]
|
354 |
all_hidden_states = () if output_hidden_states else None
|
355 |
all_self_attns = () if output_attentions else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
for b_idx, block in enumerate(self.blocks):
|
357 |
if output_hidden_states:
|
358 |
assert all_hidden_states is not None
|
@@ -360,35 +614,31 @@ class MPTModel(MPTPreTrainedModel):
|
|
360 |
past_key_value = (
|
361 |
past_key_values[b_idx] if past_key_values is not None else None
|
362 |
)
|
363 |
-
|
364 |
if self.gradient_checkpointing and self.training:
|
365 |
-
|
366 |
-
|
367 |
-
def custom_forward(*inputs):
|
368 |
-
# None for past_key_value
|
369 |
-
return module(*inputs)
|
370 |
-
|
371 |
-
return custom_forward
|
372 |
-
|
373 |
-
(x, attn_weights, present) = torch.utils.checkpoint.checkpoint(
|
374 |
-
create_custom_forward(block),
|
375 |
x,
|
376 |
past_key_value,
|
377 |
attn_bias,
|
|
|
378 |
attention_mask,
|
379 |
self.is_causal,
|
380 |
bool(output_attentions),
|
|
|
|
|
381 |
)
|
382 |
else:
|
383 |
(x, attn_weights, present) = block(
|
384 |
x,
|
385 |
past_key_value=past_key_value,
|
386 |
attn_bias=attn_bias,
|
|
|
387 |
attention_mask=attention_mask,
|
388 |
is_causal=self.is_causal,
|
389 |
output_attentions=bool(output_attentions),
|
|
|
|
|
390 |
)
|
391 |
-
|
392 |
if presents is not None:
|
393 |
presents += (present,)
|
394 |
if output_attentions:
|
@@ -415,19 +665,24 @@ class MPTModel(MPTPreTrainedModel):
|
|
415 |
)
|
416 |
|
417 |
def fsdp_wrap_fn(self, module: nn.Module) -> bool:
|
418 |
-
return
|
419 |
|
420 |
def activation_checkpointing_fn(self, module: nn.Module) -> bool:
|
421 |
return isinstance(module, MPTBlock)
|
422 |
|
423 |
|
424 |
class MPTForCausalLM(MPTPreTrainedModel):
|
|
|
425 |
def __init__(self, config: MPTConfig):
|
426 |
super().__init__(config)
|
427 |
-
if not config.tie_word_embeddings:
|
428 |
-
raise ValueError("MPTForCausalLM only supports tied word embeddings")
|
429 |
log.info(f"Instantiating an MPTForCausalLM model from {__file__}")
|
430 |
self.transformer: MPTModel = MPTModel(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
431 |
for child in self.transformer.children():
|
432 |
if isinstance(child, torch.nn.ModuleList):
|
433 |
continue
|
@@ -445,19 +700,38 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
445 |
)
|
446 |
self.logit_scale = logit_scale
|
447 |
|
448 |
-
def get_input_embeddings(self) -> nn.Embedding:
|
449 |
-
return self.transformer.
|
450 |
|
451 |
def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
|
452 |
-
self.transformer.
|
453 |
|
454 |
-
def get_output_embeddings(self) -> nn.Embedding:
|
455 |
-
|
|
|
|
|
456 |
|
457 |
def set_output_embeddings(
|
458 |
-
self, new_embeddings: Union[SharedEmbedding, nn.Embedding]
|
459 |
) -> None:
|
460 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
461 |
|
462 |
def set_decoder(self, decoder: MPTModel) -> None:
|
463 |
self.transformer = decoder
|
@@ -467,7 +741,7 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
467 |
|
468 |
def forward(
|
469 |
self,
|
470 |
-
input_ids: torch.LongTensor,
|
471 |
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
472 |
attention_mask: Optional[torch.ByteTensor] = None,
|
473 |
prefix_mask: Optional[torch.ByteTensor] = None,
|
@@ -483,10 +757,6 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
483 |
return_dict if return_dict is not None else self.config.return_dict
|
484 |
)
|
485 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
486 |
-
if inputs_embeds is not None:
|
487 |
-
raise NotImplementedError(
|
488 |
-
"inputs_embeds has to be None (for hf/peft support)."
|
489 |
-
)
|
490 |
outputs = self.transformer(
|
491 |
input_ids=input_ids,
|
492 |
past_key_values=past_key_values,
|
@@ -497,10 +767,14 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
497 |
output_attentions=output_attentions,
|
498 |
output_hidden_states=output_hidden_states,
|
499 |
use_cache=use_cache,
|
|
|
500 |
)
|
501 |
-
|
502 |
-
outputs.last_hidden_state
|
503 |
-
|
|
|
|
|
|
|
504 |
if self.logit_scale is not None:
|
505 |
if self.logit_scale == 0:
|
506 |
warnings.warn(
|
@@ -532,10 +806,45 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
532 |
)
|
533 |
|
534 |
def fsdp_wrap_fn(self, module: nn.Module) -> bool:
|
535 |
-
return
|
536 |
|
537 |
def activation_checkpointing_fn(self, module: nn.Module) -> bool:
|
538 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
539 |
|
540 |
def prepare_inputs_for_generation(
|
541 |
self,
|
@@ -544,8 +853,6 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
544 |
inputs_embeds: Optional[torch.Tensor] = None,
|
545 |
**kwargs: Any,
|
546 |
) -> Dict[str, Any]:
|
547 |
-
if inputs_embeds is not None:
|
548 |
-
raise NotImplementedError("inputs_embeds is not implemented for MPT yet")
|
549 |
attention_mask = kwargs["attention_mask"].bool()
|
550 |
if attention_mask[:, -1].sum() != attention_mask.shape[0]:
|
551 |
raise NotImplementedError(
|
@@ -565,14 +872,20 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
565 |
)
|
566 |
else:
|
567 |
prefix_mask = None
|
568 |
-
|
569 |
-
"
|
570 |
-
|
571 |
-
"
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
576 |
|
577 |
@staticmethod
|
578 |
def _reorder_cache(
|
|
|
2 |
|
3 |
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
4 |
"""
|
5 |
+
|
6 |
+
from __future__ import annotations
|
7 |
import math
|
8 |
import warnings
|
9 |
from typing import Any, Dict, List, Mapping, MutableMapping, Optional, Tuple, Union
|
10 |
import torch
|
11 |
import torch.nn as nn
|
12 |
import torch.nn.functional as F
|
13 |
+
from .attention import is_flash_v1_installed, is_flash_v2_installed
|
14 |
+
|
15 |
+
if is_flash_v2_installed():
|
16 |
+
try:
|
17 |
+
from flash_attn import bert_padding
|
18 |
+
from flash_attn.layers.rotary import RotaryEmbedding as DAILRotaryEmbedding
|
19 |
+
except Exception as e:
|
20 |
+
raise e
|
21 |
+
if is_flash_v1_installed():
|
22 |
+
try:
|
23 |
+
from flash_attn import bert_padding
|
24 |
+
except Exception as e:
|
25 |
+
raise e
|
26 |
from transformers import PreTrainedModel, PreTrainedTokenizerBase
|
27 |
from transformers.modeling_outputs import (
|
28 |
BaseModelOutputWithPast,
|
29 |
CausalLMOutputWithPast,
|
30 |
)
|
31 |
+
from transformers.models.llama.modeling_llama import (
|
32 |
+
LlamaDynamicNTKScalingRotaryEmbedding as HFDynamicNTKScalingRotaryEmbedding,
|
33 |
+
)
|
34 |
+
from transformers.models.llama.modeling_llama import (
|
35 |
+
LlamaLinearScalingRotaryEmbedding as HFLinearScalingRotaryEmbedding,
|
36 |
+
)
|
37 |
+
from transformers.models.llama.modeling_llama import (
|
38 |
+
LlamaRotaryEmbedding as HFRotaryEmbedding,
|
39 |
)
|
40 |
+
from .attention import ATTN_CLASS_REGISTRY, attn_bias_shape, build_attn_bias, gen_slopes
|
41 |
from .blocks import MPTBlock
|
42 |
from .custom_embedding import SharedEmbedding
|
43 |
from .fc import FC_CLASS_REGISTRY as FC_CLASS_REGISTRY
|
|
|
63 |
log = logging.getLogger(__name__)
|
64 |
|
65 |
|
66 |
+
def gen_rotary_embedding(
|
67 |
+
rope_head_dim: int,
|
68 |
+
rope_impl: str,
|
69 |
+
rope_theta: int,
|
70 |
+
rope_dail_config: dict,
|
71 |
+
rope_hf_config: dict,
|
72 |
+
max_seq_len: int,
|
73 |
+
):
|
74 |
+
if rope_impl == "dail":
|
75 |
+
return DAILRotaryEmbedding(
|
76 |
+
dim=rope_head_dim,
|
77 |
+
base=rope_theta,
|
78 |
+
interleaved=False,
|
79 |
+
scale_base=(
|
80 |
+
rope_dail_config["xpos_scale_base"]
|
81 |
+
if rope_dail_config["type"] == "xpos"
|
82 |
+
else None
|
83 |
+
),
|
84 |
+
pos_idx_in_fp32=rope_dail_config["pos_idx_in_fp32"],
|
85 |
+
device="cpu",
|
86 |
+
)
|
87 |
+
elif rope_impl == "hf":
|
88 |
+
if rope_hf_config["type"] == "no_scaling":
|
89 |
+
return HFRotaryEmbedding(
|
90 |
+
rope_head_dim,
|
91 |
+
max_position_embeddings=max_seq_len,
|
92 |
+
base=rope_theta,
|
93 |
+
device="cpu",
|
94 |
+
)
|
95 |
+
elif rope_hf_config["type"] == "linear":
|
96 |
+
return HFLinearScalingRotaryEmbedding(
|
97 |
+
rope_head_dim,
|
98 |
+
max_position_embeddings=max_seq_len,
|
99 |
+
base=rope_theta,
|
100 |
+
scaling_factor=rope_hf_config["factor"],
|
101 |
+
device="cpu",
|
102 |
+
)
|
103 |
+
elif rope_hf_config["type"] == "dynamic":
|
104 |
+
return HFDynamicNTKScalingRotaryEmbedding(
|
105 |
+
rope_head_dim,
|
106 |
+
max_position_embeddings=max_seq_len,
|
107 |
+
base=rope_theta,
|
108 |
+
scaling_factor=rope_hf_config["factor"],
|
109 |
+
device="cpu",
|
110 |
+
)
|
111 |
+
raise ValueError("rope_impl needs to be either dail or hf")
|
112 |
+
|
113 |
+
|
114 |
+
def gen_attention_mask_in_length(
|
115 |
+
sequence_id: Union[None, torch.Tensor],
|
116 |
+
S: int,
|
117 |
+
attn_uses_sequence_id: bool,
|
118 |
+
attn_impl: str,
|
119 |
+
attention_mask: Union[torch.Tensor, None],
|
120 |
+
):
|
121 |
+
"""Generates the attention mask used for sequence masking in FA v2.
|
122 |
+
|
123 |
+
Only supports sequence id based sparse attention for no attention masking or attention masking with right padding.
|
124 |
+
In case of left padding:
|
125 |
+
1. Training with left padding is not supported in MPT (see https://github.com/mosaicml/llm-foundry/blob/1eecd4cb8e734499f77f6a35f657b8b20c0adfcb/llmfoundry/models/mpt/modeling_mpt.py#L407).
|
126 |
+
2. For generation with left padding, we only have a single sequence id per sample, so we don't need sequence id based sparse attention.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
sequence_id (Union[None, torch.Tensor]): Tensor containing the sequence id for each token. Shape (batch_size, seq_len).
|
130 |
+
S (int): Sequence length
|
131 |
+
attn_uses_sequence_id (bool): Whether the attention uses sequence id based masking.
|
132 |
+
attn_impl (str): Attention implementation. This function is only creates attention_mask_in_length for flash attention.
|
133 |
+
attention_mask (Union[torch.Tensor, None]): Attention mask tensor of shape (batch_size, seq_len)
|
134 |
+
|
135 |
+
Returns:
|
136 |
+
attention_mask_in_length: (batch, seqlen), int, a nonzero number (e.g., 1, 2, 3, etc.) means length of concatenated sequence in b-th batch, and 0 means none. For example, if batch = 3 and seqlen = 6, the attention_mask_in_length is:
|
137 |
+
```
|
138 |
+
[
|
139 |
+
[2, 3, 0, 0, 0, 0],
|
140 |
+
[3, 2, 0, 0, 0, 0],
|
141 |
+
[6, 0, 0, 0, 0, 0]
|
142 |
+
]
|
143 |
+
```
|
144 |
+
, which refers to the 3D-attention mask:
|
145 |
+
```
|
146 |
+
[
|
147 |
+
[
|
148 |
+
[1, 0, 0, 0, 0, 0],
|
149 |
+
[1, 1, 0, 0, 0, 0],
|
150 |
+
[0, 0, 1, 0, 0, 0],
|
151 |
+
[0, 0, 1, 1, 0, 0],
|
152 |
+
[0, 0, 1, 1, 1, 0],
|
153 |
+
[0, 0, 0, 0, 0, 1]
|
154 |
+
],
|
155 |
+
[
|
156 |
+
[1, 0, 0, 0, 0, 0],
|
157 |
+
[1, 1, 0, 0, 0, 0],
|
158 |
+
[1, 1, 1, 0, 0, 0],
|
159 |
+
[0, 0, 0, 1, 0, 0],
|
160 |
+
[0, 0, 0, 1, 1, 0],
|
161 |
+
[0, 0, 0, 0, 0, 1]
|
162 |
+
],
|
163 |
+
[
|
164 |
+
[1, 0, 0, 0, 0, 0],
|
165 |
+
[1, 1, 0, 0, 0, 0],
|
166 |
+
[1, 1, 1, 0, 0, 0],
|
167 |
+
[1, 1, 1, 1, 0, 0],
|
168 |
+
[1, 1, 1, 1, 1, 0],
|
169 |
+
[1, 1, 1, 1, 1, 1]
|
170 |
+
]
|
171 |
+
]
|
172 |
+
```.
|
173 |
+
(The description above is taken verbatim from https://github.com/Dao-AILab/flash-attention/blob/9356a1c0389660d7e231ff3163c1ac17d9e3824a/flash_attn/bert_padding.py#L125 .)
|
174 |
+
"""
|
175 |
+
attention_mask_in_length = None
|
176 |
+
if sequence_id is not None and attn_uses_sequence_id and (attn_impl == "flash"):
|
177 |
+
if (
|
178 |
+
attention_mask is not None
|
179 |
+
and attention_mask[:, 0].sum() != attention_mask.shape[0]
|
180 |
+
):
|
181 |
+
raise NotImplementedError(
|
182 |
+
"Left padding is not supported with flash attention when attn_uses_sequence_id is set to True."
|
183 |
+
)
|
184 |
+
if S != sequence_id.shape[-1]:
|
185 |
+
raise ValueError(
|
186 |
+
f"Sequence length ({S}) does not match length of sequences in sequence_id ({sequence_id.shape[-1]})."
|
187 |
+
)
|
188 |
+
if attention_mask is not None:
|
189 |
+
sequence_id = sequence_id.masked_fill(~attention_mask, 0)
|
190 |
+
attention_mask_in_length = torch.nn.functional.one_hot(sequence_id)
|
191 |
+
if attention_mask is not None:
|
192 |
+
attention_mask_in_length = attention_mask_in_length.masked_fill(
|
193 |
+
~attention_mask.unsqueeze(-1), 0
|
194 |
+
)
|
195 |
+
attention_mask_in_length = attention_mask_in_length.sum(dim=1)
|
196 |
+
attention_mask_in_length = torch.nn.functional.pad(
|
197 |
+
attention_mask_in_length,
|
198 |
+
(0, S - attention_mask_in_length.shape[-1]),
|
199 |
+
mode="constant",
|
200 |
+
value=0,
|
201 |
+
)
|
202 |
+
return attention_mask_in_length
|
203 |
+
|
204 |
+
|
205 |
+
def gen_flash_attn_padding_info(
|
206 |
+
bsz: int,
|
207 |
+
S: int,
|
208 |
+
past_key_len: int,
|
209 |
+
device: torch.device,
|
210 |
+
attention_mask_in_length: Optional[torch.Tensor] = None,
|
211 |
+
attention_mask: Optional[torch.Tensor] = None,
|
212 |
+
):
|
213 |
+
flash_attn_padding_info = {}
|
214 |
+
if attention_mask_in_length is None:
|
215 |
+
key_padding_mask = attention_mask
|
216 |
+
if key_padding_mask is None:
|
217 |
+
key_padding_mask = torch.ones(
|
218 |
+
(bsz, past_key_len + S), dtype=torch.bool, device=device
|
219 |
+
)
|
220 |
+
query_padding_mask = key_padding_mask[:, -S:]
|
221 |
+
unpadding_function = bert_padding.unpad_input
|
222 |
+
else:
|
223 |
+
key_padding_mask = attention_mask_in_length
|
224 |
+
query_padding_mask = attention_mask_in_length
|
225 |
+
unpadding_function = bert_padding.unpad_input_for_concatenated_sequences
|
226 |
+
(_, indices_q, cu_seqlens_q, max_seqlen_q) = unpadding_function(
|
227 |
+
torch.empty(bsz, S, 1, device=device), query_padding_mask
|
228 |
+
)
|
229 |
+
(_, indices_k, cu_seqlens_k, max_seqlen_k) = unpadding_function(
|
230 |
+
torch.empty(bsz, past_key_len + S, 1, device=device), key_padding_mask
|
231 |
+
)
|
232 |
+
(_, indices_v, _, _) = unpadding_function(
|
233 |
+
torch.empty(bsz, past_key_len + S, 1, device=device), key_padding_mask
|
234 |
+
)
|
235 |
+
flash_attn_padding_info["indices_q"] = indices_q
|
236 |
+
flash_attn_padding_info["indices_k"] = indices_k
|
237 |
+
flash_attn_padding_info["indices_v"] = indices_v
|
238 |
+
flash_attn_padding_info["cu_seqlens_q"] = cu_seqlens_q
|
239 |
+
flash_attn_padding_info["cu_seqlens_k"] = cu_seqlens_k
|
240 |
+
flash_attn_padding_info["max_seqlen_q"] = max_seqlen_q
|
241 |
+
flash_attn_padding_info["max_seqlen_k"] = max_seqlen_k
|
242 |
+
return flash_attn_padding_info
|
243 |
+
|
244 |
+
|
245 |
+
def apply_sequence_id(
|
246 |
+
attn_bias: torch.Tensor, sequence_id: torch.LongTensor, max_seq_len: int
|
247 |
+
) -> torch.Tensor:
|
248 |
+
seq_len = sequence_id.shape[-1]
|
249 |
+
if seq_len > max_seq_len:
|
250 |
+
raise ValueError(
|
251 |
+
f"sequence_id sequence length cannot exceed max_seq_len={max_seq_len}"
|
252 |
+
)
|
253 |
+
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
254 |
+
cannot_attend = torch.logical_not(
|
255 |
+
torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))
|
256 |
+
).unsqueeze(1)
|
257 |
+
min_val = torch.finfo(attn_bias.dtype).min
|
258 |
+
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
259 |
+
return attn_bias
|
260 |
+
|
261 |
+
|
262 |
class MPTPreTrainedModel(PreTrainedModel):
|
263 |
config_class = MPTConfig
|
264 |
base_model_prefix = "model"
|
265 |
_no_split_modules = ["MPTBlock"]
|
266 |
+
_supports_flash_attn_2 = True
|
267 |
supports_gradient_checkpointing = True
|
268 |
|
269 |
+
|
270 |
+
def _fsdp_wrap_fn(self: Union[MPTModel, MPTForCausalLM], module: nn.Module) -> bool:
|
271 |
+
return isinstance(module, MPTBlock)
|
|
|
|
|
|
|
|
|
272 |
|
273 |
|
274 |
class MPTModel(MPTPreTrainedModel):
|
275 |
+
|
276 |
def __init__(self, config: MPTConfig):
|
277 |
config._validate_config()
|
278 |
super().__init__(config)
|
|
|
310 |
]
|
311 |
)
|
312 |
self.norm_f = norm_class(config.d_model, device=config.init_device)
|
313 |
+
self.rope = config.attn_config["rope"]
|
314 |
+
self.rope_impl = None
|
315 |
+
if self.rope:
|
316 |
+
self.rope_impl = config.attn_config["rope_impl"]
|
317 |
+
self.rotary_embedding = gen_rotary_embedding(
|
318 |
+
rope_head_dim=config.d_model // config.n_heads,
|
319 |
+
rope_impl=self.rope_impl,
|
320 |
+
rope_theta=config.attn_config["rope_theta"],
|
321 |
+
rope_dail_config=config.attn_config["rope_dail_config"],
|
322 |
+
rope_hf_config=config.attn_config["rope_hf_config"],
|
323 |
+
max_seq_len=self.config.max_seq_len,
|
324 |
+
)
|
325 |
if config.init_device != "meta":
|
326 |
log.info(
|
327 |
f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.'
|
|
|
342 |
if config.no_bias:
|
343 |
for module in self.modules():
|
344 |
if hasattr(module, "bias") and isinstance(module.bias, nn.Parameter):
|
345 |
+
log.info(f"Removing bias from module={module!r}.")
|
346 |
module.register_parameter("bias", None)
|
347 |
if hasattr(module, "use_bias"):
|
348 |
+
log.info(f"Setting use_bias=False for module={module!r}.")
|
349 |
module.use_bias = False
|
350 |
log.debug(self)
|
351 |
log.debug(f"Using {self.config.init_config['name']} initialization.")
|
352 |
|
353 |
+
def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]:
|
354 |
return self.wte
|
355 |
|
356 |
+
def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
|
357 |
self.wte = value
|
358 |
|
359 |
@torch.no_grad()
|
|
|
391 |
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
|
392 |
if self.attn_uses_sequence_id and sequence_id is not None:
|
393 |
assert isinstance(attn_bias, torch.Tensor)
|
394 |
+
attn_bias = apply_sequence_id(
|
395 |
+
attn_bias, sequence_id, self.config.max_seq_len
|
396 |
+
)
|
397 |
if attention_mask is not None:
|
398 |
s_k = attention_mask.shape[-1]
|
399 |
if attn_bias is None:
|
|
|
410 |
attn_bias = attn_bias.masked_fill(
|
411 |
~attention_mask.view(-1, 1, 1, s_k), min_val
|
412 |
)
|
413 |
+
return (attn_bias, attention_mask)
|
414 |
|
415 |
def _apply_prefix_mask(
|
416 |
self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor
|
|
|
437 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
438 |
return attn_bias
|
439 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
440 |
def forward(
|
441 |
self,
|
442 |
+
input_ids: Optional[torch.LongTensor] = None,
|
443 |
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
444 |
attention_mask: Optional[torch.ByteTensor] = None,
|
445 |
prefix_mask: Optional[torch.ByteTensor] = None,
|
|
|
454 |
return_dict if return_dict is not None else self.config.return_dict
|
455 |
)
|
456 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
|
|
|
457 |
if attention_mask is not None:
|
458 |
attention_mask = attention_mask.bool()
|
459 |
if prefix_mask is not None:
|
|
|
479 |
raise ValueError(
|
480 |
"prefix_mask is a required argument when MPT is configured with prefix_lm=True."
|
481 |
)
|
|
|
|
|
482 |
if self.training:
|
483 |
if self.attn_uses_sequence_id and sequence_id is None:
|
484 |
raise ValueError(
|
|
|
490 |
"MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. "
|
491 |
+ "This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True."
|
492 |
)
|
493 |
+
|
494 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
495 |
+
warnings.warn(
|
496 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
497 |
+
)
|
498 |
+
use_cache = False
|
499 |
+
|
500 |
+
if input_ids is not None and inputs_embeds is not None:
|
501 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds.")
|
502 |
+
elif input_ids is not None:
|
503 |
+
bsz = input_ids.size(0)
|
504 |
+
S = input_ids.size(1)
|
505 |
+
x = self.wte(input_ids)
|
506 |
+
input_device = input_ids.device
|
507 |
+
elif inputs_embeds is not None:
|
508 |
+
bsz = inputs_embeds.size(0)
|
509 |
+
S = inputs_embeds.size(1)
|
510 |
+
x = inputs_embeds
|
511 |
+
input_device = inputs_embeds.device
|
512 |
+
else:
|
513 |
+
raise ValueError("You must specify input_ids or inputs_embeds")
|
514 |
assert (
|
515 |
S <= self.config.max_seq_len
|
516 |
), f"Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}"
|
517 |
+
rotary_emb_w_meta_info = None
|
518 |
+
past_position = 0
|
519 |
+
if past_key_values is not None:
|
520 |
+
if len(past_key_values) != self.config.n_layers:
|
521 |
+
raise ValueError(
|
522 |
+
f"past_key_values must provide a past_key_value for each attention "
|
523 |
+
+ f"layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r})."
|
524 |
+
)
|
525 |
+
past_position = past_key_values[0][0].size(1)
|
526 |
+
if self.attn_impl == "torch":
|
527 |
+
past_position = past_key_values[0][0].size(3)
|
528 |
+
if self.learned_pos_emb or self.rope:
|
529 |
+
if self.learned_pos_emb and S + past_position > self.config.max_seq_len:
|
530 |
raise ValueError(
|
531 |
f"Cannot forward input with past sequence length {past_position} and current sequence length "
|
532 |
+ f"{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}."
|
533 |
)
|
534 |
+
if self.learned_pos_emb or (self.rope and self.rope_impl == "hf"):
|
535 |
+
pos = torch.arange(
|
536 |
+
past_position,
|
537 |
+
S + past_position,
|
538 |
+
dtype=torch.long,
|
539 |
+
device=input_device,
|
540 |
+
).unsqueeze(0)
|
541 |
+
if attention_mask is not None:
|
542 |
+
pos = torch.clamp(
|
543 |
+
pos
|
544 |
+
- torch.cumsum((~attention_mask).to(torch.int32), dim=1)[
|
545 |
+
:, past_position:
|
546 |
+
],
|
547 |
+
min=0,
|
548 |
+
)
|
549 |
+
if self.learned_pos_emb:
|
550 |
+
x = x + self.wpe(pos)
|
551 |
+
elif self.rope and self.rope_impl == "hf":
|
552 |
+
rotary_emb_w_meta_info = {
|
553 |
+
"impl": self.rope_impl,
|
554 |
+
"rotary_emb": self.rotary_embedding,
|
555 |
+
"offset_info": pos,
|
556 |
+
"seq_len": S + past_position,
|
557 |
+
}
|
558 |
+
elif self.rope and self.rope_impl == "dail":
|
559 |
+
rotary_emb_w_meta_info = {
|
560 |
+
"impl": self.rope_impl,
|
561 |
+
"rotary_emb": self.rotary_embedding,
|
562 |
+
"offset_info": past_position,
|
563 |
+
"seq_len": S + past_position,
|
564 |
+
}
|
565 |
if self.embedding_fraction == 1:
|
566 |
x = self.emb_drop(x)
|
567 |
else:
|
|
|
577 |
prefix_mask=prefix_mask,
|
578 |
sequence_id=sequence_id,
|
579 |
)
|
580 |
+
attention_mask_in_length = gen_attention_mask_in_length(
|
581 |
+
sequence_id=sequence_id,
|
582 |
+
S=S,
|
583 |
+
attn_uses_sequence_id=self.attn_uses_sequence_id,
|
584 |
+
attn_impl=self.attn_impl,
|
585 |
+
attention_mask=attention_mask,
|
586 |
+
)
|
587 |
+
alibi_slopes = None
|
588 |
+
if self.alibi and self.attn_impl == "flash":
|
589 |
+
alibi_slopes = gen_slopes(
|
590 |
+
n_heads=self.config.n_heads,
|
591 |
+
alibi_bias_max=self.alibi_bias_max,
|
592 |
+
device=x.device,
|
593 |
+
return_1d=True,
|
594 |
+
)
|
595 |
presents = () if use_cache else None
|
596 |
if use_cache and past_key_values is None:
|
597 |
past_key_values = [() for _ in range(self.config.n_layers)]
|
598 |
all_hidden_states = () if output_hidden_states else None
|
599 |
all_self_attns = () if output_attentions else None
|
600 |
+
flash_attn_padding_info = {}
|
601 |
+
if self.attn_impl == "flash":
|
602 |
+
flash_attn_padding_info = gen_flash_attn_padding_info(
|
603 |
+
bsz,
|
604 |
+
S,
|
605 |
+
past_position,
|
606 |
+
x.device,
|
607 |
+
attention_mask_in_length,
|
608 |
+
attention_mask,
|
609 |
+
)
|
610 |
for b_idx, block in enumerate(self.blocks):
|
611 |
if output_hidden_states:
|
612 |
assert all_hidden_states is not None
|
|
|
614 |
past_key_value = (
|
615 |
past_key_values[b_idx] if past_key_values is not None else None
|
616 |
)
|
|
|
617 |
if self.gradient_checkpointing and self.training:
|
618 |
+
(x, attn_weights, present) = self._gradient_checkpointing_func(
|
619 |
+
block.__call__,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
620 |
x,
|
621 |
past_key_value,
|
622 |
attn_bias,
|
623 |
+
rotary_emb_w_meta_info,
|
624 |
attention_mask,
|
625 |
self.is_causal,
|
626 |
bool(output_attentions),
|
627 |
+
alibi_slopes,
|
628 |
+
flash_attn_padding_info,
|
629 |
)
|
630 |
else:
|
631 |
(x, attn_weights, present) = block(
|
632 |
x,
|
633 |
past_key_value=past_key_value,
|
634 |
attn_bias=attn_bias,
|
635 |
+
rotary_emb_w_meta_info=rotary_emb_w_meta_info,
|
636 |
attention_mask=attention_mask,
|
637 |
is_causal=self.is_causal,
|
638 |
output_attentions=bool(output_attentions),
|
639 |
+
alibi_slopes=alibi_slopes,
|
640 |
+
flash_attn_padding_info=flash_attn_padding_info,
|
641 |
)
|
|
|
642 |
if presents is not None:
|
643 |
presents += (present,)
|
644 |
if output_attentions:
|
|
|
665 |
)
|
666 |
|
667 |
def fsdp_wrap_fn(self, module: nn.Module) -> bool:
|
668 |
+
return _fsdp_wrap_fn(self, module)
|
669 |
|
670 |
def activation_checkpointing_fn(self, module: nn.Module) -> bool:
|
671 |
return isinstance(module, MPTBlock)
|
672 |
|
673 |
|
674 |
class MPTForCausalLM(MPTPreTrainedModel):
|
675 |
+
|
676 |
def __init__(self, config: MPTConfig):
|
677 |
super().__init__(config)
|
|
|
|
|
678 |
log.info(f"Instantiating an MPTForCausalLM model from {__file__}")
|
679 |
self.transformer: MPTModel = MPTModel(config)
|
680 |
+
self.lm_head = None
|
681 |
+
if not config.tie_word_embeddings:
|
682 |
+
self.lm_head = nn.Linear(
|
683 |
+
config.d_model, config.vocab_size, bias=False, device=config.init_device
|
684 |
+
)
|
685 |
+
self.lm_head._fsdp_wrap = True
|
686 |
for child in self.transformer.children():
|
687 |
if isinstance(child, torch.nn.ModuleList):
|
688 |
continue
|
|
|
700 |
)
|
701 |
self.logit_scale = logit_scale
|
702 |
|
703 |
+
def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]:
|
704 |
+
return self.transformer.get_input_embeddings()
|
705 |
|
706 |
def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
|
707 |
+
self.transformer.set_input_embeddings(value)
|
708 |
|
709 |
+
def get_output_embeddings(self) -> Union[SharedEmbedding, nn.Embedding, nn.Linear]:
|
710 |
+
if self.lm_head is not None:
|
711 |
+
return self.lm_head
|
712 |
+
return self.transformer.get_input_embeddings()
|
713 |
|
714 |
def set_output_embeddings(
|
715 |
+
self, new_embeddings: Union[SharedEmbedding, nn.Embedding, nn.Linear]
|
716 |
) -> None:
|
717 |
+
if self.lm_head is not None:
|
718 |
+
self.lm_head = new_embeddings
|
719 |
+
else:
|
720 |
+
if not isinstance(new_embeddings, (SharedEmbedding, nn.Embedding)):
|
721 |
+
raise ValueError(
|
722 |
+
"new_embeddings must be an instance of SharedEmbedding "
|
723 |
+
+ f"or nn.Embedding, but got {type(new_embeddings)}."
|
724 |
+
)
|
725 |
+
warnings.warn(
|
726 |
+
"Using `set_output_embeddings` to set the embedding layer of "
|
727 |
+
+ "MPTForCausalLM with tied weights. Given weights are tied, "
|
728 |
+
+ "using `set_input_embeddings` is recommended over using "
|
729 |
+
+ "`set_output_embeddings`."
|
730 |
+
)
|
731 |
+
self.transformer.set_input_embeddings(new_embeddings)
|
732 |
+
|
733 |
+
def tie_weights(self) -> None:
|
734 |
+
self.lm_head = None
|
735 |
|
736 |
def set_decoder(self, decoder: MPTModel) -> None:
|
737 |
self.transformer = decoder
|
|
|
741 |
|
742 |
def forward(
|
743 |
self,
|
744 |
+
input_ids: Optional[torch.LongTensor] = None,
|
745 |
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
746 |
attention_mask: Optional[torch.ByteTensor] = None,
|
747 |
prefix_mask: Optional[torch.ByteTensor] = None,
|
|
|
757 |
return_dict if return_dict is not None else self.config.return_dict
|
758 |
)
|
759 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
|
|
|
|
|
760 |
outputs = self.transformer(
|
761 |
input_ids=input_ids,
|
762 |
past_key_values=past_key_values,
|
|
|
767 |
output_attentions=output_attentions,
|
768 |
output_hidden_states=output_hidden_states,
|
769 |
use_cache=use_cache,
|
770 |
+
inputs_embeds=inputs_embeds,
|
771 |
)
|
772 |
+
if self.lm_head is not None:
|
773 |
+
logits = self.lm_head(outputs.last_hidden_state)
|
774 |
+
else:
|
775 |
+
out = outputs.last_hidden_state
|
776 |
+
out = out.to(self.transformer.wte.weight.device)
|
777 |
+
logits = self.transformer.wte(out, True)
|
778 |
if self.logit_scale is not None:
|
779 |
if self.logit_scale == 0:
|
780 |
warnings.warn(
|
|
|
806 |
)
|
807 |
|
808 |
def fsdp_wrap_fn(self, module: nn.Module) -> bool:
|
809 |
+
return _fsdp_wrap_fn(self, module)
|
810 |
|
811 |
def activation_checkpointing_fn(self, module: nn.Module) -> bool:
|
812 |
+
act_ckpt_list = getattr(
|
813 |
+
self.config, "activation_checkpointing_target", None
|
814 |
+
) or ["MPTBlock"]
|
815 |
+
if isinstance(act_ckpt_list, str):
|
816 |
+
act_ckpt_list = [act_ckpt_list]
|
817 |
+
elif not isinstance(act_ckpt_list, list):
|
818 |
+
raise ValueError(
|
819 |
+
f"activation_checkpointing_target must be either a single string or a list, but got {type(act_ckpt_list)}"
|
820 |
+
)
|
821 |
+
if "MPTBlock" in act_ckpt_list or "mptblock" in act_ckpt_list:
|
822 |
+
if len(act_ckpt_list) > 1:
|
823 |
+
log.info(
|
824 |
+
"Activation checkpointing MPTBlock only (ignoring other sub-block modules specified in activation_checkpointing_target)."
|
825 |
+
)
|
826 |
+
return isinstance(module, MPTBlock)
|
827 |
+
mod_types = ()
|
828 |
+
for mod_name in act_ckpt_list:
|
829 |
+
if mod_name.lower() == "mptblock":
|
830 |
+
mod_types += (MPTBlock,)
|
831 |
+
elif mod_name in ATTN_CLASS_REGISTRY:
|
832 |
+
mod_types += (ATTN_CLASS_REGISTRY[mod_name],)
|
833 |
+
elif mod_name in FFN_CLASS_REGISTRY:
|
834 |
+
mod_types += (FFN_CLASS_REGISTRY[mod_name],)
|
835 |
+
elif mod_name in NORM_CLASS_REGISTRY:
|
836 |
+
mod_types += (NORM_CLASS_REGISTRY[mod_name],)
|
837 |
+
else:
|
838 |
+
msg = ", ".join(
|
839 |
+
list(ATTN_CLASS_REGISTRY.keys())
|
840 |
+
+ list(FFN_CLASS_REGISTRY.keys())
|
841 |
+
+ list(NORM_CLASS_REGISTRY.keys())
|
842 |
+
+ ["MPTBlock"]
|
843 |
+
)
|
844 |
+
raise ValueError(
|
845 |
+
f"{mod_name} (specified in activation_checkpointing_target) is not a recognized option out of available options {msg}."
|
846 |
+
)
|
847 |
+
return isinstance(module, mod_types)
|
848 |
|
849 |
def prepare_inputs_for_generation(
|
850 |
self,
|
|
|
853 |
inputs_embeds: Optional[torch.Tensor] = None,
|
854 |
**kwargs: Any,
|
855 |
) -> Dict[str, Any]:
|
|
|
|
|
856 |
attention_mask = kwargs["attention_mask"].bool()
|
857 |
if attention_mask[:, -1].sum() != attention_mask.shape[0]:
|
858 |
raise NotImplementedError(
|
|
|
872 |
)
|
873 |
else:
|
874 |
prefix_mask = None
|
875 |
+
if inputs_embeds is not None and past_key_values is None:
|
876 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
877 |
+
else:
|
878 |
+
model_inputs = {"input_ids": input_ids}
|
879 |
+
model_inputs.update(
|
880 |
+
{
|
881 |
+
"attention_mask": attention_mask,
|
882 |
+
"prefix_mask": prefix_mask,
|
883 |
+
"sequence_id": sequence_id,
|
884 |
+
"past_key_values": past_key_values,
|
885 |
+
"use_cache": kwargs.get("use_cache", True),
|
886 |
+
}
|
887 |
+
)
|
888 |
+
return model_inputs
|
889 |
|
890 |
@staticmethod
|
891 |
def _reorder_cache(
|
norm.py
CHANGED
@@ -1,57 +1,122 @@
|
|
1 |
from typing import Dict, List, Optional, Type, Union
|
2 |
import torch
|
3 |
|
|
|
4 |
def _cast_if_autocast_enabled(tensor: torch.Tensor) -> torch.Tensor:
|
5 |
if torch.is_autocast_enabled():
|
6 |
-
if tensor.device.type ==
|
7 |
dtype = torch.get_autocast_gpu_dtype()
|
8 |
-
elif tensor.device.type ==
|
9 |
dtype = torch.get_autocast_cpu_dtype()
|
10 |
else:
|
11 |
raise NotImplementedError()
|
12 |
return tensor.to(dtype=dtype)
|
13 |
return tensor
|
14 |
|
|
|
15 |
class LPLayerNorm(torch.nn.LayerNorm):
|
16 |
|
17 |
-
def __init__(
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
21 |
module_device = x.device
|
22 |
downcast_x = _cast_if_autocast_enabled(x)
|
23 |
-
downcast_weight =
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
with torch.autocast(enabled=False, device_type=module_device.type):
|
26 |
-
return torch.nn.functional.layer_norm(
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
|
30 |
if weight is not None:
|
31 |
return output * weight
|
32 |
return output
|
33 |
|
|
|
34 |
class RMSNorm(torch.nn.Module):
|
35 |
|
36 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
super().__init__()
|
38 |
self.eps = eps
|
39 |
if weight:
|
40 |
-
self.weight = torch.nn.Parameter(
|
|
|
|
|
41 |
else:
|
42 |
-
self.register_parameter(
|
43 |
|
44 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
45 |
return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
|
46 |
|
|
|
47 |
class LPRMSNorm(RMSNorm):
|
48 |
|
49 |
-
def __init__(
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
53 |
downcast_x = _cast_if_autocast_enabled(x)
|
54 |
-
downcast_weight =
|
|
|
|
|
|
|
|
|
55 |
with torch.autocast(enabled=False, device_type=x.device.type):
|
56 |
return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from typing import Dict, List, Optional, Type, Union
|
2 |
import torch
|
3 |
|
4 |
+
|
5 |
def _cast_if_autocast_enabled(tensor: torch.Tensor) -> torch.Tensor:
|
6 |
if torch.is_autocast_enabled():
|
7 |
+
if tensor.device.type == "cuda":
|
8 |
dtype = torch.get_autocast_gpu_dtype()
|
9 |
+
elif tensor.device.type == "cpu":
|
10 |
dtype = torch.get_autocast_cpu_dtype()
|
11 |
else:
|
12 |
raise NotImplementedError()
|
13 |
return tensor.to(dtype=dtype)
|
14 |
return tensor
|
15 |
|
16 |
+
|
17 |
class LPLayerNorm(torch.nn.LayerNorm):
|
18 |
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
normalized_shape: Union[int, List[int], torch.Size],
|
22 |
+
eps: float = 1e-05,
|
23 |
+
elementwise_affine: bool = True,
|
24 |
+
device: Optional[torch.device] = None,
|
25 |
+
dtype: Optional[torch.dtype] = None,
|
26 |
+
):
|
27 |
+
super().__init__(
|
28 |
+
normalized_shape=normalized_shape,
|
29 |
+
eps=eps,
|
30 |
+
elementwise_affine=elementwise_affine,
|
31 |
+
device=device,
|
32 |
+
dtype=dtype,
|
33 |
+
)
|
34 |
|
35 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
36 |
module_device = x.device
|
37 |
downcast_x = _cast_if_autocast_enabled(x)
|
38 |
+
downcast_weight = (
|
39 |
+
_cast_if_autocast_enabled(self.weight)
|
40 |
+
if self.weight is not None
|
41 |
+
else self.weight
|
42 |
+
)
|
43 |
+
downcast_bias = (
|
44 |
+
_cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
|
45 |
+
)
|
46 |
with torch.autocast(enabled=False, device_type=module_device.type):
|
47 |
+
return torch.nn.functional.layer_norm(
|
48 |
+
downcast_x,
|
49 |
+
self.normalized_shape,
|
50 |
+
downcast_weight,
|
51 |
+
downcast_bias,
|
52 |
+
self.eps,
|
53 |
+
)
|
54 |
|
55 |
+
|
56 |
+
def rms_norm(
|
57 |
+
x: torch.Tensor, weight: Optional[torch.Tensor] = None, eps: float = 1e-05
|
58 |
+
) -> torch.Tensor:
|
59 |
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
|
60 |
if weight is not None:
|
61 |
return output * weight
|
62 |
return output
|
63 |
|
64 |
+
|
65 |
class RMSNorm(torch.nn.Module):
|
66 |
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
normalized_shape: Union[int, List[int], torch.Size],
|
70 |
+
eps: float = 1e-05,
|
71 |
+
weight: bool = True,
|
72 |
+
dtype: Optional[torch.dtype] = None,
|
73 |
+
device: Optional[torch.device] = None,
|
74 |
+
):
|
75 |
super().__init__()
|
76 |
self.eps = eps
|
77 |
if weight:
|
78 |
+
self.weight = torch.nn.Parameter(
|
79 |
+
torch.ones(normalized_shape, dtype=dtype, device=device)
|
80 |
+
)
|
81 |
else:
|
82 |
+
self.register_parameter("weight", None)
|
83 |
|
84 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
85 |
return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
|
86 |
|
87 |
+
|
88 |
class LPRMSNorm(RMSNorm):
|
89 |
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
normalized_shape: Union[int, List[int], torch.Size],
|
93 |
+
eps: float = 1e-05,
|
94 |
+
weight: bool = True,
|
95 |
+
dtype: Optional[torch.dtype] = None,
|
96 |
+
device: Optional[torch.device] = None,
|
97 |
+
):
|
98 |
+
super().__init__(
|
99 |
+
normalized_shape=normalized_shape,
|
100 |
+
eps=eps,
|
101 |
+
weight=weight,
|
102 |
+
dtype=dtype,
|
103 |
+
device=device,
|
104 |
+
)
|
105 |
|
106 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
107 |
downcast_x = _cast_if_autocast_enabled(x)
|
108 |
+
downcast_weight = (
|
109 |
+
_cast_if_autocast_enabled(self.weight)
|
110 |
+
if self.weight is not None
|
111 |
+
else self.weight
|
112 |
+
)
|
113 |
with torch.autocast(enabled=False, device_type=x.device.type):
|
114 |
return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
|
115 |
+
|
116 |
+
|
117 |
+
NORM_CLASS_REGISTRY: Dict[str, Type[torch.nn.Module]] = {
|
118 |
+
"layernorm": torch.nn.LayerNorm,
|
119 |
+
"low_precision_layernorm": LPLayerNorm,
|
120 |
+
"rmsnorm": RMSNorm,
|
121 |
+
"low_precision_rmsnorm": LPRMSNorm,
|
122 |
+
}
|
param_init_fns.py
CHANGED
@@ -7,69 +7,90 @@ import torch
|
|
7 |
from torch import nn
|
8 |
from .fc import FC_CLASS_REGISTRY
|
9 |
from .norm import NORM_CLASS_REGISTRY
|
|
|
10 |
try:
|
11 |
import transformer_engine.pytorch as te
|
12 |
except:
|
13 |
te = None
|
14 |
|
|
|
15 |
def torch_default_param_init_fn_(module: nn.Module, **kwargs: Any) -> None:
|
16 |
del kwargs
|
17 |
-
if hasattr(module,
|
|
|
|
|
18 |
module.reset_parameters()
|
19 |
|
|
|
20 |
def fused_init_helper_(module: nn.Module, init_fn_: Callable) -> None:
|
21 |
-
_fused = getattr(module,
|
22 |
if _fused is None:
|
23 |
-
raise RuntimeError(f
|
24 |
assert isinstance(module.weight, torch.Tensor)
|
25 |
(dim, splits) = _fused
|
26 |
splits = (0, *splits, module.weight.size(dim))
|
27 |
-
for
|
28 |
slice_indices = [slice(None)] * module.weight.ndim
|
29 |
slice_indices[dim] = slice(s, e)
|
30 |
init_fn_(module.weight[slice_indices])
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
del kwargs
|
34 |
init_div_is_residual = init_div_is_residual
|
35 |
if init_div_is_residual is False:
|
36 |
div_is_residual = 1.0
|
37 |
elif init_div_is_residual is True:
|
38 |
div_is_residual = math.sqrt(2 * n_layers)
|
39 |
-
elif isinstance(init_div_is_residual, float) or isinstance(
|
|
|
|
|
40 |
div_is_residual = init_div_is_residual
|
41 |
elif init_div_is_residual.isnumeric():
|
42 |
div_is_residual = float(init_div_is_residual)
|
43 |
else:
|
44 |
div_is_residual = 1.0
|
45 |
-
raise ValueError(
|
|
|
|
|
46 |
if isinstance(module, tuple(set(FC_CLASS_REGISTRY.values()))):
|
47 |
-
if hasattr(module,
|
48 |
fused_init_helper_(module, init_fn_)
|
49 |
else:
|
50 |
init_fn_(module.weight)
|
51 |
if module.bias is not None:
|
52 |
assert isinstance(module.bias, torch.Tensor)
|
53 |
torch.nn.init.zeros_(module.bias)
|
54 |
-
if init_div_is_residual is not False and getattr(module,
|
55 |
with torch.no_grad():
|
56 |
module.weight.div_(div_is_residual)
|
57 |
elif isinstance(module, nn.Embedding):
|
58 |
if emb_init_std is not None:
|
59 |
std = emb_init_std
|
60 |
if std == 0:
|
61 |
-
warnings.warn(f
|
62 |
emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
|
63 |
elif emb_init_uniform_lim is not None:
|
64 |
lim = emb_init_uniform_lim
|
65 |
if isinstance(lim, Sequence):
|
66 |
if len(lim) > 2:
|
67 |
-
raise ValueError(
|
|
|
|
|
68 |
if lim[0] == lim[1]:
|
69 |
-
warnings.warn(f
|
70 |
else:
|
71 |
if lim == 0:
|
72 |
-
warnings.warn(f
|
73 |
lim = [-lim, lim]
|
74 |
(a, b) = lim
|
75 |
emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
|
@@ -77,21 +98,29 @@ def generic_param_init_fn_(module: nn.Module, init_fn_: Callable, n_layers: int,
|
|
77 |
emb_init_fn_ = init_fn_
|
78 |
emb_init_fn_(module.weight)
|
79 |
elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))):
|
80 |
-
if hasattr(module,
|
81 |
torch.nn.init.ones_(module.weight)
|
82 |
-
if hasattr(module,
|
83 |
torch.nn.init.zeros_(module.bias)
|
84 |
elif isinstance(module, nn.MultiheadAttention):
|
85 |
if module._qkv_same_embed_dim:
|
86 |
assert module.in_proj_weight is not None
|
87 |
-
assert
|
|
|
|
|
|
|
|
|
88 |
assert d_model is not None
|
89 |
_d = d_model
|
90 |
splits = (0, _d, 2 * _d, 3 * _d)
|
91 |
-
for
|
92 |
init_fn_(module.in_proj_weight[s:e])
|
93 |
else:
|
94 |
-
assert
|
|
|
|
|
|
|
|
|
95 |
assert module.in_proj_weight is None
|
96 |
init_fn_(module.q_proj_weight)
|
97 |
init_fn_(module.k_proj_weight)
|
@@ -103,7 +132,9 @@ def generic_param_init_fn_(module: nn.Module, init_fn_: Callable, n_layers: int,
|
|
103 |
if module.bias_v is not None:
|
104 |
torch.nn.init.zeros_(module.bias_v)
|
105 |
init_fn_(module.out_proj.weight)
|
106 |
-
if init_div_is_residual is not False and getattr(
|
|
|
|
|
107 |
with torch.no_grad():
|
108 |
module.out_proj.weight.div_(div_is_residual)
|
109 |
if module.out_proj.bias is not None:
|
@@ -125,28 +156,94 @@ def generic_param_init_fn_(module: nn.Module, init_fn_: Callable, n_layers: int,
|
|
125 |
module.fc2_weight.div_(div_is_residual)
|
126 |
else:
|
127 |
for _ in module.parameters(recurse=False):
|
128 |
-
raise NotImplementedError(
|
|
|
|
|
129 |
|
130 |
-
|
|
|
131 |
return partial(torch.nn.init.normal_, mean=mean, std=std)
|
132 |
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
del kwargs
|
135 |
init_fn_ = _normal_init_(std=std)
|
136 |
-
generic_param_init_fn_(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
del kwargs
|
140 |
if init_std is None:
|
141 |
-
raise ValueError(
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
-
def small_param_init_fn_(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
del kwargs
|
146 |
std = math.sqrt(2 / (5 * d_model))
|
147 |
-
_normal_param_init_fn_(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
"""From section 2.3.1 of GPT-NeoX-20B:
|
151 |
|
152 |
An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
|
@@ -155,25 +252,129 @@ def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init
|
|
155 |
"""
|
156 |
del kwargs
|
157 |
residual_div = n_layers / math.sqrt(10)
|
158 |
-
small_param_init_fn_(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
-
def kaiming_uniform_param_init_fn_(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
del kwargs
|
162 |
-
kaiming_uniform_ = partial(
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
del kwargs
|
167 |
-
kaiming_normal_ = partial(
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
-
def xavier_uniform_param_init_fn_(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
del kwargs
|
172 |
xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
|
173 |
-
generic_param_init_fn_(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
del kwargs
|
177 |
xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
|
178 |
-
generic_param_init_fn_(
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from torch import nn
|
8 |
from .fc import FC_CLASS_REGISTRY
|
9 |
from .norm import NORM_CLASS_REGISTRY
|
10 |
+
|
11 |
try:
|
12 |
import transformer_engine.pytorch as te
|
13 |
except:
|
14 |
te = None
|
15 |
|
16 |
+
|
17 |
def torch_default_param_init_fn_(module: nn.Module, **kwargs: Any) -> None:
|
18 |
del kwargs
|
19 |
+
if hasattr(module, "reset_parameters") and isinstance(
|
20 |
+
module.reset_parameters, Callable
|
21 |
+
):
|
22 |
module.reset_parameters()
|
23 |
|
24 |
+
|
25 |
def fused_init_helper_(module: nn.Module, init_fn_: Callable) -> None:
|
26 |
+
_fused = getattr(module, "_fused", None)
|
27 |
if _fused is None:
|
28 |
+
raise RuntimeError(f"Internal logic error")
|
29 |
assert isinstance(module.weight, torch.Tensor)
|
30 |
(dim, splits) = _fused
|
31 |
splits = (0, *splits, module.weight.size(dim))
|
32 |
+
for s, e in zip(splits[:-1], splits[1:]):
|
33 |
slice_indices = [slice(None)] * module.weight.ndim
|
34 |
slice_indices[dim] = slice(s, e)
|
35 |
init_fn_(module.weight[slice_indices])
|
36 |
|
37 |
+
|
38 |
+
def generic_param_init_fn_(
|
39 |
+
module: nn.Module,
|
40 |
+
init_fn_: Callable,
|
41 |
+
n_layers: int,
|
42 |
+
d_model: Optional[int] = None,
|
43 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
44 |
+
emb_init_std: Optional[float] = None,
|
45 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
46 |
+
**kwargs: Any,
|
47 |
+
) -> None:
|
48 |
del kwargs
|
49 |
init_div_is_residual = init_div_is_residual
|
50 |
if init_div_is_residual is False:
|
51 |
div_is_residual = 1.0
|
52 |
elif init_div_is_residual is True:
|
53 |
div_is_residual = math.sqrt(2 * n_layers)
|
54 |
+
elif isinstance(init_div_is_residual, float) or isinstance(
|
55 |
+
init_div_is_residual, int
|
56 |
+
):
|
57 |
div_is_residual = init_div_is_residual
|
58 |
elif init_div_is_residual.isnumeric():
|
59 |
div_is_residual = float(init_div_is_residual)
|
60 |
else:
|
61 |
div_is_residual = 1.0
|
62 |
+
raise ValueError(
|
63 |
+
f"Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}"
|
64 |
+
)
|
65 |
if isinstance(module, tuple(set(FC_CLASS_REGISTRY.values()))):
|
66 |
+
if hasattr(module, "_fused"):
|
67 |
fused_init_helper_(module, init_fn_)
|
68 |
else:
|
69 |
init_fn_(module.weight)
|
70 |
if module.bias is not None:
|
71 |
assert isinstance(module.bias, torch.Tensor)
|
72 |
torch.nn.init.zeros_(module.bias)
|
73 |
+
if init_div_is_residual is not False and getattr(module, "_is_residual", False):
|
74 |
with torch.no_grad():
|
75 |
module.weight.div_(div_is_residual)
|
76 |
elif isinstance(module, nn.Embedding):
|
77 |
if emb_init_std is not None:
|
78 |
std = emb_init_std
|
79 |
if std == 0:
|
80 |
+
warnings.warn(f"Embedding layer initialized to 0.")
|
81 |
emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
|
82 |
elif emb_init_uniform_lim is not None:
|
83 |
lim = emb_init_uniform_lim
|
84 |
if isinstance(lim, Sequence):
|
85 |
if len(lim) > 2:
|
86 |
+
raise ValueError(
|
87 |
+
f"Uniform init requires a min and a max limit. User input: {lim}."
|
88 |
+
)
|
89 |
if lim[0] == lim[1]:
|
90 |
+
warnings.warn(f"Embedding layer initialized to {lim[0]}.")
|
91 |
else:
|
92 |
if lim == 0:
|
93 |
+
warnings.warn(f"Embedding layer initialized to 0.")
|
94 |
lim = [-lim, lim]
|
95 |
(a, b) = lim
|
96 |
emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
|
|
|
98 |
emb_init_fn_ = init_fn_
|
99 |
emb_init_fn_(module.weight)
|
100 |
elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))):
|
101 |
+
if hasattr(module, "weight") and isinstance(module.weight, torch.Tensor):
|
102 |
torch.nn.init.ones_(module.weight)
|
103 |
+
if hasattr(module, "bias") and isinstance(module.bias, torch.Tensor):
|
104 |
torch.nn.init.zeros_(module.bias)
|
105 |
elif isinstance(module, nn.MultiheadAttention):
|
106 |
if module._qkv_same_embed_dim:
|
107 |
assert module.in_proj_weight is not None
|
108 |
+
assert (
|
109 |
+
module.q_proj_weight is None
|
110 |
+
and module.k_proj_weight is None
|
111 |
+
and (module.v_proj_weight is None)
|
112 |
+
)
|
113 |
assert d_model is not None
|
114 |
_d = d_model
|
115 |
splits = (0, _d, 2 * _d, 3 * _d)
|
116 |
+
for s, e in zip(splits[:-1], splits[1:]):
|
117 |
init_fn_(module.in_proj_weight[s:e])
|
118 |
else:
|
119 |
+
assert (
|
120 |
+
module.q_proj_weight is not None
|
121 |
+
and module.k_proj_weight is not None
|
122 |
+
and (module.v_proj_weight is not None)
|
123 |
+
)
|
124 |
assert module.in_proj_weight is None
|
125 |
init_fn_(module.q_proj_weight)
|
126 |
init_fn_(module.k_proj_weight)
|
|
|
132 |
if module.bias_v is not None:
|
133 |
torch.nn.init.zeros_(module.bias_v)
|
134 |
init_fn_(module.out_proj.weight)
|
135 |
+
if init_div_is_residual is not False and getattr(
|
136 |
+
module.out_proj, "_is_residual", False
|
137 |
+
):
|
138 |
with torch.no_grad():
|
139 |
module.out_proj.weight.div_(div_is_residual)
|
140 |
if module.out_proj.bias is not None:
|
|
|
156 |
module.fc2_weight.div_(div_is_residual)
|
157 |
else:
|
158 |
for _ in module.parameters(recurse=False):
|
159 |
+
raise NotImplementedError(
|
160 |
+
f"{module.__class__.__name__} parameters are not initialized by param_init_fn."
|
161 |
+
)
|
162 |
|
163 |
+
|
164 |
+
def _normal_init_(std: float, mean: float = 0.0) -> Callable:
|
165 |
return partial(torch.nn.init.normal_, mean=mean, std=std)
|
166 |
|
167 |
+
|
168 |
+
def _normal_param_init_fn_(
|
169 |
+
module: nn.Module,
|
170 |
+
std: float,
|
171 |
+
n_layers: int,
|
172 |
+
d_model: Optional[int] = None,
|
173 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
174 |
+
emb_init_std: Optional[float] = None,
|
175 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
176 |
+
**kwargs: Any,
|
177 |
+
) -> None:
|
178 |
del kwargs
|
179 |
init_fn_ = _normal_init_(std=std)
|
180 |
+
generic_param_init_fn_(
|
181 |
+
module=module,
|
182 |
+
init_fn_=init_fn_,
|
183 |
+
d_model=d_model,
|
184 |
+
n_layers=n_layers,
|
185 |
+
init_div_is_residual=init_div_is_residual,
|
186 |
+
emb_init_std=emb_init_std,
|
187 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
188 |
+
)
|
189 |
|
190 |
+
|
191 |
+
def baseline_param_init_fn_(
|
192 |
+
module: nn.Module,
|
193 |
+
init_std: Optional[float],
|
194 |
+
n_layers: int,
|
195 |
+
d_model: Optional[int] = None,
|
196 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
197 |
+
emb_init_std: Optional[float] = None,
|
198 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
199 |
+
**kwargs: Any,
|
200 |
+
) -> None:
|
201 |
del kwargs
|
202 |
if init_std is None:
|
203 |
+
raise ValueError(
|
204 |
+
"You must set model.init_config['init_std'] to a float value to use the default initialization scheme."
|
205 |
+
)
|
206 |
+
_normal_param_init_fn_(
|
207 |
+
module=module,
|
208 |
+
std=init_std,
|
209 |
+
d_model=d_model,
|
210 |
+
n_layers=n_layers,
|
211 |
+
init_div_is_residual=init_div_is_residual,
|
212 |
+
emb_init_std=emb_init_std,
|
213 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
214 |
+
)
|
215 |
+
|
216 |
|
217 |
+
def small_param_init_fn_(
|
218 |
+
module: nn.Module,
|
219 |
+
n_layers: int,
|
220 |
+
d_model: int,
|
221 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
222 |
+
emb_init_std: Optional[float] = None,
|
223 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
224 |
+
**kwargs: Any,
|
225 |
+
) -> None:
|
226 |
del kwargs
|
227 |
std = math.sqrt(2 / (5 * d_model))
|
228 |
+
_normal_param_init_fn_(
|
229 |
+
module=module,
|
230 |
+
std=std,
|
231 |
+
d_model=d_model,
|
232 |
+
n_layers=n_layers,
|
233 |
+
init_div_is_residual=init_div_is_residual,
|
234 |
+
emb_init_std=emb_init_std,
|
235 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
236 |
+
)
|
237 |
|
238 |
+
|
239 |
+
def neox_param_init_fn_(
|
240 |
+
module: nn.Module,
|
241 |
+
n_layers: int,
|
242 |
+
d_model: int,
|
243 |
+
emb_init_std: Optional[float] = None,
|
244 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
245 |
+
**kwargs: Any,
|
246 |
+
) -> None:
|
247 |
"""From section 2.3.1 of GPT-NeoX-20B:
|
248 |
|
249 |
An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
|
|
|
252 |
"""
|
253 |
del kwargs
|
254 |
residual_div = n_layers / math.sqrt(10)
|
255 |
+
small_param_init_fn_(
|
256 |
+
module=module,
|
257 |
+
d_model=d_model,
|
258 |
+
n_layers=n_layers,
|
259 |
+
init_div_is_residual=residual_div,
|
260 |
+
emb_init_std=emb_init_std,
|
261 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
262 |
+
)
|
263 |
+
|
264 |
|
265 |
+
def kaiming_uniform_param_init_fn_(
|
266 |
+
module: nn.Module,
|
267 |
+
n_layers: int,
|
268 |
+
d_model: Optional[int] = None,
|
269 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
270 |
+
emb_init_std: Optional[float] = None,
|
271 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
272 |
+
init_gain: float = 0,
|
273 |
+
fan_mode: str = "fan_in",
|
274 |
+
init_nonlinearity: str = "leaky_relu",
|
275 |
+
**kwargs: Any,
|
276 |
+
) -> None:
|
277 |
del kwargs
|
278 |
+
kaiming_uniform_ = partial(
|
279 |
+
nn.init.kaiming_uniform_,
|
280 |
+
a=init_gain,
|
281 |
+
mode=fan_mode,
|
282 |
+
nonlinearity=init_nonlinearity,
|
283 |
+
)
|
284 |
+
generic_param_init_fn_(
|
285 |
+
module=module,
|
286 |
+
init_fn_=kaiming_uniform_,
|
287 |
+
d_model=d_model,
|
288 |
+
n_layers=n_layers,
|
289 |
+
init_div_is_residual=init_div_is_residual,
|
290 |
+
emb_init_std=emb_init_std,
|
291 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
292 |
+
)
|
293 |
|
294 |
+
|
295 |
+
def kaiming_normal_param_init_fn_(
|
296 |
+
module: nn.Module,
|
297 |
+
n_layers: int,
|
298 |
+
d_model: Optional[int] = None,
|
299 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
300 |
+
emb_init_std: Optional[float] = None,
|
301 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
302 |
+
init_gain: float = 0,
|
303 |
+
fan_mode: str = "fan_in",
|
304 |
+
init_nonlinearity: str = "leaky_relu",
|
305 |
+
**kwargs: Any,
|
306 |
+
) -> None:
|
307 |
del kwargs
|
308 |
+
kaiming_normal_ = partial(
|
309 |
+
torch.nn.init.kaiming_normal_,
|
310 |
+
a=init_gain,
|
311 |
+
mode=fan_mode,
|
312 |
+
nonlinearity=init_nonlinearity,
|
313 |
+
)
|
314 |
+
generic_param_init_fn_(
|
315 |
+
module=module,
|
316 |
+
init_fn_=kaiming_normal_,
|
317 |
+
d_model=d_model,
|
318 |
+
n_layers=n_layers,
|
319 |
+
init_div_is_residual=init_div_is_residual,
|
320 |
+
emb_init_std=emb_init_std,
|
321 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
322 |
+
)
|
323 |
+
|
324 |
|
325 |
+
def xavier_uniform_param_init_fn_(
|
326 |
+
module: nn.Module,
|
327 |
+
n_layers: int,
|
328 |
+
d_model: Optional[int] = None,
|
329 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
330 |
+
emb_init_std: Optional[float] = None,
|
331 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
332 |
+
init_gain: float = 0,
|
333 |
+
**kwargs: Any,
|
334 |
+
) -> None:
|
335 |
del kwargs
|
336 |
xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
|
337 |
+
generic_param_init_fn_(
|
338 |
+
module=module,
|
339 |
+
init_fn_=xavier_uniform_,
|
340 |
+
d_model=d_model,
|
341 |
+
n_layers=n_layers,
|
342 |
+
init_div_is_residual=init_div_is_residual,
|
343 |
+
emb_init_std=emb_init_std,
|
344 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
345 |
+
)
|
346 |
|
347 |
+
|
348 |
+
def xavier_normal_param_init_fn_(
|
349 |
+
module: nn.Module,
|
350 |
+
n_layers: int,
|
351 |
+
d_model: Optional[int] = None,
|
352 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
353 |
+
emb_init_std: Optional[float] = None,
|
354 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
355 |
+
init_gain: float = 0,
|
356 |
+
**kwargs: Any,
|
357 |
+
) -> None:
|
358 |
del kwargs
|
359 |
xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
|
360 |
+
generic_param_init_fn_(
|
361 |
+
module=module,
|
362 |
+
init_fn_=xavier_normal_,
|
363 |
+
d_model=d_model,
|
364 |
+
n_layers=n_layers,
|
365 |
+
init_div_is_residual=init_div_is_residual,
|
366 |
+
emb_init_std=emb_init_std,
|
367 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
368 |
+
)
|
369 |
+
|
370 |
+
|
371 |
+
MODEL_INIT_REGISTRY = {
|
372 |
+
"default_": torch_default_param_init_fn_,
|
373 |
+
"baseline_": baseline_param_init_fn_,
|
374 |
+
"kaiming_uniform_": kaiming_uniform_param_init_fn_,
|
375 |
+
"kaiming_normal_": kaiming_normal_param_init_fn_,
|
376 |
+
"neox_init_": neox_param_init_fn_,
|
377 |
+
"small_init_": small_param_init_fn_,
|
378 |
+
"xavier_uniform_": xavier_uniform_param_init_fn_,
|
379 |
+
"xavier_normal_": xavier_normal_param_init_fn_,
|
380 |
+
}
|
warnings.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class VersionedDeprecationWarning(DeprecationWarning):
|
2 |
+
"""A custom deprecation warning class that includes version information.
|
3 |
+
Attributes:
|
4 |
+
message (str): The deprecation message describing why the feature is deprecated.
|
5 |
+
remove_version (str): The version in which the feature will be removed.
|
6 |
+
Example:
|
7 |
+
>>> def deprecated_function():
|
8 |
+
... warnings.warn(
|
9 |
+
... VersionedDeprecationWarning(
|
10 |
+
... "Function XYZ is deprecated.",
|
11 |
+
... after_version="2.0.0"
|
12 |
+
... )
|
13 |
+
... )
|
14 |
+
...
|
15 |
+
>>> deprecated_function()
|
16 |
+
DeprecationWarning: Function XYZ is deprecated. It will be removed in version 2.0.0.
|
17 |
+
"""
|
18 |
+
|
19 |
+
def __init__(self, message: str, remove_version: str) -> None:
|
20 |
+
super().__init__(message + f" It will be removed in version {remove_version}.")
|