airnicco8 commited on
Commit
11957e9
·
1 Parent(s): a2c62c9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -6
README.md CHANGED
@@ -5,14 +5,16 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
 
 
 
 
8
 
9
  ---
10
 
11
  # airnicco8/xlm-roberta-de
12
 
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
-
15
- <!--- Describe your model here -->
16
 
17
  ## Usage (Sentence-Transformers)
18
 
@@ -26,7 +28,7 @@ Then you can use the model like this:
26
 
27
  ```python
28
  from sentence_transformers import SentenceTransformer
29
- sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
  model = SentenceTransformer('airnicco8/xlm-roberta-de')
32
  embeddings = model.encode(sentences)
@@ -51,7 +53,7 @@ def mean_pooling(model_output, attention_mask):
51
 
52
 
53
  # Sentences we want sentence embeddings for
54
- sentences = ['This is an example sentence', 'Each sentence is converted']
55
 
56
  # Load model from HuggingFace Hub
57
  tokenizer = AutoTokenizer.from_pretrained('airnicco8/xlm-roberta-de')
@@ -87,7 +89,7 @@ The model was trained with the parameters:
87
 
88
  `torch.utils.data.dataloader.DataLoader` of length 3071 with parameters:
89
  ```
90
- {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
  ```
92
 
93
  **Loss**:
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ - german
9
+ - nli
10
+ - text-classification
11
+
12
 
13
  ---
14
 
15
  # airnicco8/xlm-roberta-de
16
 
17
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is trained on the [Ted talks transcripts](https://www.kaggle.com/datasets/rounakbanik/ted-talks) filtered only by German language, the training setting is described [here](https://towardsdatascience.com/a-complete-guide-to-transfer-learning-from-english-to-other-languages-using-sentence-embeddings-8c427f8804a9). It can be used straight-forwardly for sentence similarity, but can also be fine-tuned for NLI and Text-Classification, examples coming soon.
 
 
18
 
19
  ## Usage (Sentence-Transformers)
20
 
 
28
 
29
  ```python
30
  from sentence_transformers import SentenceTransformer
31
+ sentences = ["das ist eine glückliche Frau", "das ist ein glücklicher Mann", "das ist ein glücklicher Hund"]
32
 
33
  model = SentenceTransformer('airnicco8/xlm-roberta-de')
34
  embeddings = model.encode(sentences)
 
53
 
54
 
55
  # Sentences we want sentence embeddings for
56
+ sentences = ["das ist eine glückliche Frau", "das ist ein glücklicher Mann", "das ist ein glücklicher Hund"]
57
 
58
  # Load model from HuggingFace Hub
59
  tokenizer = AutoTokenizer.from_pretrained('airnicco8/xlm-roberta-de')
 
89
 
90
  `torch.utils.data.dataloader.DataLoader` of length 3071 with parameters:
91
  ```
92
+ {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
93
  ```
94
 
95
  **Loss**: