Update README.md
Browse files
README.md
CHANGED
@@ -5,14 +5,16 @@ tags:
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
|
|
|
|
|
|
|
|
8 |
|
9 |
---
|
10 |
|
11 |
# airnicco8/xlm-roberta-de
|
12 |
|
13 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
-
|
15 |
-
<!--- Describe your model here -->
|
16 |
|
17 |
## Usage (Sentence-Transformers)
|
18 |
|
@@ -26,7 +28,7 @@ Then you can use the model like this:
|
|
26 |
|
27 |
```python
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
-
sentences = ["
|
30 |
|
31 |
model = SentenceTransformer('airnicco8/xlm-roberta-de')
|
32 |
embeddings = model.encode(sentences)
|
@@ -51,7 +53,7 @@ def mean_pooling(model_output, attention_mask):
|
|
51 |
|
52 |
|
53 |
# Sentences we want sentence embeddings for
|
54 |
-
sentences = [
|
55 |
|
56 |
# Load model from HuggingFace Hub
|
57 |
tokenizer = AutoTokenizer.from_pretrained('airnicco8/xlm-roberta-de')
|
@@ -87,7 +89,7 @@ The model was trained with the parameters:
|
|
87 |
|
88 |
`torch.utils.data.dataloader.DataLoader` of length 3071 with parameters:
|
89 |
```
|
90 |
-
{'batch_size':
|
91 |
```
|
92 |
|
93 |
**Loss**:
|
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
+
- german
|
9 |
+
- nli
|
10 |
+
- text-classification
|
11 |
+
|
12 |
|
13 |
---
|
14 |
|
15 |
# airnicco8/xlm-roberta-de
|
16 |
|
17 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is trained on the [Ted talks transcripts](https://www.kaggle.com/datasets/rounakbanik/ted-talks) filtered only by German language, the training setting is described [here](https://towardsdatascience.com/a-complete-guide-to-transfer-learning-from-english-to-other-languages-using-sentence-embeddings-8c427f8804a9). It can be used straight-forwardly for sentence similarity, but can also be fine-tuned for NLI and Text-Classification, examples coming soon.
|
|
|
|
|
18 |
|
19 |
## Usage (Sentence-Transformers)
|
20 |
|
|
|
28 |
|
29 |
```python
|
30 |
from sentence_transformers import SentenceTransformer
|
31 |
+
sentences = ["das ist eine glückliche Frau", "das ist ein glücklicher Mann", "das ist ein glücklicher Hund"]
|
32 |
|
33 |
model = SentenceTransformer('airnicco8/xlm-roberta-de')
|
34 |
embeddings = model.encode(sentences)
|
|
|
53 |
|
54 |
|
55 |
# Sentences we want sentence embeddings for
|
56 |
+
sentences = ["das ist eine glückliche Frau", "das ist ein glücklicher Mann", "das ist ein glücklicher Hund"]
|
57 |
|
58 |
# Load model from HuggingFace Hub
|
59 |
tokenizer = AutoTokenizer.from_pretrained('airnicco8/xlm-roberta-de')
|
|
|
89 |
|
90 |
`torch.utils.data.dataloader.DataLoader` of length 3071 with parameters:
|
91 |
```
|
92 |
+
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
93 |
```
|
94 |
|
95 |
**Loss**:
|