update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: testlink-class-3
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# testlink-class-3
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1443
|
23 |
+
- Precision: 0.5833
|
24 |
+
- Recall: 0.6550
|
25 |
+
- F1: 0.6171
|
26 |
+
- Accuracy: 0.9730
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 7.5e-05
|
46 |
+
- train_batch_size: 32
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 30
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 29 | 0.2830 | 0.0 | 0.0 | 0.0 | 0.9440 |
|
58 |
+
| No log | 2.0 | 58 | 0.2789 | 0.0 | 0.0 | 0.0 | 0.9440 |
|
59 |
+
| No log | 3.0 | 87 | 0.2388 | 0.0 | 0.0 | 0.0 | 0.9440 |
|
60 |
+
| No log | 4.0 | 116 | 0.2080 | 0.0 | 0.0 | 0.0 | 0.9440 |
|
61 |
+
| No log | 5.0 | 145 | 0.2335 | 0.0167 | 0.0058 | 0.0087 | 0.9322 |
|
62 |
+
| No log | 6.0 | 174 | 0.1889 | 0.0 | 0.0 | 0.0 | 0.9440 |
|
63 |
+
| No log | 7.0 | 203 | 0.1553 | 0.3469 | 0.1988 | 0.2528 | 0.9506 |
|
64 |
+
| No log | 8.0 | 232 | 0.1491 | 0.5 | 0.2339 | 0.3187 | 0.9576 |
|
65 |
+
| No log | 9.0 | 261 | 0.1604 | 0.4872 | 0.2222 | 0.3052 | 0.9605 |
|
66 |
+
| No log | 10.0 | 290 | 0.1347 | 0.4733 | 0.3626 | 0.4106 | 0.9587 |
|
67 |
+
| No log | 11.0 | 319 | 0.1391 | 0.5165 | 0.2749 | 0.3588 | 0.9605 |
|
68 |
+
| No log | 12.0 | 348 | 0.1392 | 0.4848 | 0.3743 | 0.4224 | 0.9633 |
|
69 |
+
| No log | 13.0 | 377 | 0.1306 | 0.4706 | 0.3743 | 0.4169 | 0.9636 |
|
70 |
+
| No log | 14.0 | 406 | 0.1382 | 0.4774 | 0.4327 | 0.4540 | 0.9642 |
|
71 |
+
| No log | 15.0 | 435 | 0.1368 | 0.4734 | 0.5205 | 0.4958 | 0.9655 |
|
72 |
+
| No log | 16.0 | 464 | 0.1316 | 0.5052 | 0.5731 | 0.5370 | 0.9666 |
|
73 |
+
| No log | 17.0 | 493 | 0.1333 | 0.4852 | 0.6725 | 0.5637 | 0.9660 |
|
74 |
+
| 0.1607 | 18.0 | 522 | 0.1379 | 0.56 | 0.5731 | 0.5665 | 0.9695 |
|
75 |
+
| 0.1607 | 19.0 | 551 | 0.1534 | 0.5941 | 0.5906 | 0.5924 | 0.9706 |
|
76 |
+
| 0.1607 | 20.0 | 580 | 0.1294 | 0.5606 | 0.6491 | 0.6016 | 0.9712 |
|
77 |
+
| 0.1607 | 21.0 | 609 | 0.1403 | 0.5231 | 0.6608 | 0.5840 | 0.9704 |
|
78 |
+
| 0.1607 | 22.0 | 638 | 0.1429 | 0.6044 | 0.6433 | 0.6232 | 0.9719 |
|
79 |
+
| 0.1607 | 23.0 | 667 | 0.1411 | 0.5825 | 0.6608 | 0.6192 | 0.9719 |
|
80 |
+
| 0.1607 | 24.0 | 696 | 0.1339 | 0.5631 | 0.6784 | 0.6154 | 0.9708 |
|
81 |
+
| 0.1607 | 25.0 | 725 | 0.1345 | 0.5825 | 0.6608 | 0.6192 | 0.9721 |
|
82 |
+
| 0.1607 | 26.0 | 754 | 0.1464 | 0.5833 | 0.6550 | 0.6171 | 0.9717 |
|
83 |
+
| 0.1607 | 27.0 | 783 | 0.1403 | 0.5672 | 0.6667 | 0.6129 | 0.9715 |
|
84 |
+
| 0.1607 | 28.0 | 812 | 0.1445 | 0.5934 | 0.6316 | 0.6119 | 0.9725 |
|
85 |
+
| 0.1607 | 29.0 | 841 | 0.1433 | 0.5588 | 0.6667 | 0.608 | 0.9715 |
|
86 |
+
| 0.1607 | 30.0 | 870 | 0.1443 | 0.5833 | 0.6550 | 0.6171 | 0.9730 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.28.1
|
92 |
+
- Pytorch 2.0.0+cu118
|
93 |
+
- Datasets 2.12.0
|
94 |
+
- Tokenizers 0.13.3
|