---
language:
- en
- fa
---
![image/webp](https://i.postimg.cc/VN4F7WRC/Untitled-design-modified.png)
## [Model description](#model-description)|[Example output](#example-output)|[Banchmark results](#banchmark-results)|[How to use](#how-to-use)|[Training and finetuning](#training-and-finetuning) |
----
# Model description
----
# Example output:
**Example 1:**
- Input: "سلام، خوبی؟"
- Output: "سلام، خوشحالم که با شما صحبت می کنم. چطور می توانم به شما کمک کنم؟"
**Example 2:**
- Input: "سلام، خوبی؟"
- Output: "سلام، خوشحالم که با شما صحبت می کنم. چطور می توانم به شما کمک کنم؟"
----
# Banchmark results
| model | dataset | max_token | prompt | score |
|---------------|------------------|-----------|--------|---------|
| base-model-7b | ARC-easy-dev | 2 | en-1 | 0.41929 |
| base-model-7b | ARC-easy-dev | 80 | en-2 | 0.39122 |
| base-model-7b | ARC-easy-dev | 300 | en-1 | 0.34448 |
| model | dataset | max_token | prompt | score |
|---------------|------------------|-----------|--------|---------|
| fa-model-7b | ARC-easy-dev | 80 | en-1 | 0.37894 |
| fa-model-7b | ARC-easy-dev | 80 | en-2 | 0.33333 |
| fa-model-7b | ARC-easy-dev | 80 | fa-2 | 0.28771 |
| fa-model-7b | ARC-easy-dev | 300 | fa-1 | 0.25752 |
| fa-model-7b | ARC-easy-dev | 2 | fa-1 | 0.24035 |
| model | dataset | max_token | prompt | score |
|---------------|--------------------|-----------|--------|---------|
| base-model-7b | ARC-challenge-dev | 80 | en-2 | 0.37123 |
| base-model-7b | ARC-challenge-dev | 2 | en-2 | 0.36789 |
| base-model-7b | ARC-challenge-dev | 2 | en-1 | 0.35451 |
| base-model-7b | ARC-challenge-dev | 80 | en-1 | 0.33779 |
| model | dataset | max_token | prompt | score |
|---------------|--------------------|-----------|--------|---------|
| fa-model-7b | ARC-challenge-dev | 2 | en-1 | 0.39298 |
| fa-model-7b | ARC-challenge-dev | 80 | en-1 | 0.38421 |
| fa-model-7b | ARC-challenge-dev | 2 | en-2 | 0.31929 |
| fa-model-7b | ARC-challenge-dev | 80 | en-2 | 0.31754 |
----
# How to use
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("aidal/Persian-Mistral-7B")
model = AutoModelForCausalLM.from_pretrained("aidal/Persian-Mistral-7B")
input_text = "پایتخت ایران کجاست؟"
input_ids = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
----
# Training and finetuning