Text-to-Speech
Transformers
Safetensors
parler_tts
text2text-generation
annotation
ylacombe commited on
Commit
dec3aa8
·
verified ·
1 Parent(s): e8ae059

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +235 -152
README.md CHANGED
@@ -1,199 +1,282 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
 
57
 
58
- ## Bias, Risks, and Limitations
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
61
 
62
- [More Information Needed]
 
 
 
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
 
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
73
 
74
- [More Information Needed]
 
75
 
76
- ## Training Details
 
77
 
78
- ### Training Data
 
 
 
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
 
83
 
84
- ### Training Procedure
 
 
 
 
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
 
89
 
90
- [More Information Needed]
 
91
 
 
 
92
 
93
- #### Training Hyperparameters
 
 
 
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - text-to-speech
5
+ - annotation
6
+ license: apache-2.0
7
+ language:
8
+ - en
9
+ - as
10
+ - bn
11
+ - gu
12
+ - hi
13
+ - kn
14
+ - ks
15
+ - or
16
+ - ml
17
+ - mr
18
+ - ne
19
+ - pa
20
+ - sa
21
+ - sd
22
+ - ta
23
+ - te
24
+ - ur
25
+ - om
26
+ pipeline_tag: text-to-speech
27
+ inference: false
28
+ datasets:
29
+ - ai4b-hf/GLOBE-annotated
30
  ---
31
 
32
+ <img src="https://huggingface.co/datasets/parler-tts/images/resolve/main/thumbnail.png" alt="Parler Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
33
 
 
34
 
35
+ # Indic Parler-TTS
36
 
37
+ <a target="_blank" href="https://huggingface.co/spaces/PHBJT/multi_parler_tts">
38
+ <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/>
39
+ </a>
40
 
41
+ **Indic Parler-TTS** is a multilingual Indic extension of [Parler-TTS Mini](https://huggingface.co/parler-tts/parler-tts-mini-v1.1).
42
 
43
+ It is a fine-tuned version, trained on a **8,385 hours** multilingual Indic and English dataset.
44
 
45
+ **Indic Parler-TTS Mini** can officially speak in 20 Indic languages, making it comprehensive for regional language technologies, and in English. The **21 languages** supported are: Assamese, Bengali, Bodo, Chhattisgarhi, Dogri, English, Gujarati, Hindi, Kannada, Konkani, Maithili, Malayalam, Manipuri, Marathi, Nepali, Odia, Sanskrit, Santali, Sindhi, Tamil, Telugu, and Urdu.
46
 
47
+ Thanks to its **better prompt tokenizer**, it can easily be extended to other languages. This tokenizer has a larger vocabulary and handles byte fallback, which simplifies multilingual training.
48
 
49
+ 🚨 This work is the result of a collaboration between the **HuggingFace audio team** and the **[AI4Bharat](https://ai4bharat.iitm.ac.in/) team**. 🚨
 
 
 
 
 
 
50
 
 
51
 
52
+ ## 📖 Quick Index
53
+ * [👨‍💻 Installation](#👨‍💻-installation)
54
+ * [🎲 Using a random voice](#🎲-random-voice)
55
+ * [🌍 Switching languages](#[🌍-switching-languages)
56
+ * [🎯 Using a specific speaker](#🎯-using-a-specific-speaker)
57
+ * [📐Evaluation](#📐-evaluation)
58
+ * [Motivation](#motivation)
59
+ * [Optimizing inference](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md)
60
 
61
+ ## 🛠️ Usage
 
 
62
 
63
+ 🚨 Unlike previous versions of Parler-TTS, here we use two tokenizers - one for the prompt and one for the description. 🚨
64
 
65
+ ### 👨‍💻 Installation
66
 
67
+ Using Parler-TTS is as simple as "bonjour". Simply install the library once:
68
 
69
+ ```sh
70
+ pip install git+https://github.com/huggingface/parler-tts.git
71
+ ```
72
 
 
73
 
74
+ ### 🎲 Random voice
75
 
 
76
 
77
+ **Parler-TTS** has been trained to generate speech with features that can be controlled with a simple text prompt, for example:
78
 
79
+ ```py
80
+ import torch
81
+ from parler_tts import ParlerTTSForConditionalGeneration
82
+ from transformers import AutoTokenizer
83
+ import soundfile as sf
84
 
85
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
86
 
87
+ model = ParlerTTSForConditionalGeneration.from_pretrained("ai4b-hf/indic-parler-tts-pretrained-v3").to(device)
88
+ tokenizer = AutoTokenizer.from_pretrained("ai4b-hf/indic-parler-tts-pretrained-v3")
89
+ description_tokenizer = AutoTokenizer.from_pretrained(model.config.text_encoder._name_or_path)
90
 
91
+ prompt = "Hey, how are you doing today?"
92
+ description = "A female speaker with a British accent delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
93
 
94
+ input_ids = description_tokenizer(description, return_tensors="pt").input_ids.to(device)
95
+ prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
96
 
97
+ generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
98
+ audio_arr = generation.cpu().numpy().squeeze()
99
+ sf.write("indic_tts_out.wav", audio_arr, model.config.sampling_rate)
100
+ ```
101
 
102
+ ### 🌍 Switching languages
103
 
104
+ The template automatically adapts to the language it detects in the prompt. You don't need to specify the language you want to use. For example, to switch to Hindi, simply use an Hindi prompt:
105
 
106
+ ```py
107
+ import torch
108
+ from parler_tts import ParlerTTSForConditionalGeneration
109
+ from transformers import AutoTokenizer
110
+ import soundfile as sf
111
 
112
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
113
 
114
+ model = ParlerTTSForConditionalGeneration.from_pretrained("ai4b-hf/indic-parler-tts-pretrained-v3").to(device)
115
+ tokenizer = AutoTokenizer.from_pretrained("ai4b-hf/indic-parler-tts-pretrained-v3")
116
+ description_tokenizer = AutoTokenizer.from_pretrained(model.config.text_encoder._name_or_path)
117
 
118
+ prompt = "अरे, तुम आज कैसे हो?"
119
+ description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
120
 
121
+ input_ids = description_tokenizer(description, return_tensors="pt").input_ids.to(device)
122
+ prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
123
 
124
+ generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
125
+ audio_arr = generation.cpu().numpy().squeeze()
126
+ sf.write("indic_tts_out.wav", audio_arr, model.config.sampling_rate)
127
+ ```
128
 
129
+ ### 🎯 Using a specific speaker
130
 
131
+ To ensure speaker consistency across generations, this checkpoint was also trained on pre-determined speakers, characterized by name (e.g. Rohit, Karan, Leela, Maya, Sita, ...).
132
+ To take advantage of this, simply adapt your text description to specify which speaker to use: `Divya's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise.`
133
 
134
+ ```py
135
+ import torch
136
+ from parler_tts import ParlerTTSForConditionalGeneration
137
+ from transformers import AutoTokenizer
138
+ import soundfile as sf
139
 
140
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
141
 
142
+ model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device)
143
+ tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1")
144
 
145
+ prompt = "अरे, तुम आज कैसे हो?"
146
+ description = "Divya's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise."
147
 
148
+ input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
149
+ prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
150
 
151
+ generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
152
+ audio_arr = generation.cpu().numpy().squeeze()
153
+ sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate)
154
+ ```
155
 
156
+ Here is the list of speakers:
157
 
158
+ | Language | Male | Female |
159
+ |---------------|----------|----------|
160
+ | Assamese | Amit | Aditi |
161
+ | Bengali | Arjun | Sita |
162
+ | Bodo | Bikram | Maya |
163
+ | Chhattisgarhi | Bhanu | Champa |
164
+ | Dogri | Karan | Leela |
165
+ | English | Thoma | Mary |
166
+ | Gujarati | Yash | Neha |
167
+ | Hindi | Rohit | Divya |
168
+ | Kannada | Suresh | Anu |
169
+ | Kashmiri | Rohit | Shabnam |
170
+ | Konkani | Deepak | Sunita |
171
+ | Maithili | Anil | Divya |
172
+ | Malayalam | Harish | Anjali |
173
+ | Manipuri | Ranjit | Laishram |
174
+ | Marathi | Sanjay | Sunita |
175
+ | Nepali | Ram | Amrita |
176
+ | Odia | Manas | Debjani |
177
+ | Punjabi | Gurpreet | Divjot |
178
+ | Sanskrit | Aryan | Vasudha |
179
+ | Santali | Arjun | Pushpa |
180
+ | Sindhi | Rajesh | Rekha |
181
+ | Tamil | NA | Jaya |
182
+ | Telugu | Prakash | Lalitha |
183
+ | Urdu | Rohit | Zainab |
184
+
185
+
186
+ **Tips**:
187
+ * We've set up an [inference guide](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md) to make generation faster. Think SDPA, torch.compile, batching and streaming!
188
+ * Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise
189
+ * Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech
190
+ * The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt
191
+
192
+
193
+ ## 📐 Evaluation
194
+
195
+ ## Motivation
196
+
197
+ Parler-TTS is a reproduction of work from the paper [Natural language guidance of high-fidelity text-to-speech with synthetic annotations](https://www.text-description-to-speech.com) by Dan Lyth and Simon King, from Stability AI and Edinburgh University respectively.
198
+
199
+ Parler-TTS was released alongside:
200
+ * [The Parler-TTS repository](https://github.com/huggingface/parler-tts) - you can train and fine-tuned your own version of the model.
201
+ * [The Data-Speech repository](https://github.com/huggingface/dataspeech) - a suite of utility scripts designed to annotate speech datasets.
202
+ * [The Parler-TTS organization](https://huggingface.co/parler-tts) - where you can find the annotated datasets as well as the future checkpoints.
203
+
204
+
205
+ ## Training dataset
206
+
207
+ - **Description**:
208
+ The model was trained on an internal **Indic-Parler-Dataset**, a large-scale multilingual speech corpus designed to train the **Indic Parler-TTS** model. It provides comprehensive coverage of 24 languages, which includes all the 22 official languages of India along with Chattisgarhi and English, making it an invaluable resource for speech technologies focused on the subcontinent.
209
+
210
+ - **Key Statistics**:
211
+
212
+ | Dataset | Duration (hrs) | Languages Covered | No. of Utterances | License |
213
+ |:---------------:|:--------------:|:-----------------:|:-----------------:|:------------:|
214
+ | GLOBE | 535.0 | 1 | 581,725 | CC V1 |
215
+ | IndicTTS | 382.0 | 12 | 220,606 | CC BY 4.0 |
216
+ | IndicVoices | 2,651.0 | 22 | 1,121,104 | CC BY 4.0 |
217
+ | IndicVoices-R | 4,067.0 | 22 | 1,749,066 | CC BY 4.0 |
218
+ | LIMMITS | 568.0 | 7 | 246,008 | CC BY 4.0 |
219
+ | Rasa | 288.0 | 9 | 155,734 | CC BY 4.0 |
220
+
221
+ - **Languages Covered**:
222
+ The dataset supports **22 official languages** of India, along with English and Chhattisgarhi, making it comprehensive for regional language technologies. These languages include Assamese, Bengali, Bodo, Chhattisgarhi, Dogri, English, Gujarati, Hindi, Kannada, Kashmiri, Konkani, Maithili, Malayalam, Manipuri, Marathi, Nepali, Odia, Punjabi, Sanskrit, Santali, Sindhi, Tamil, Telugu, and Urdu.
223
+
224
+ - **Language-Wise Data Breakdown**:
225
+
226
+ | Language | Duration (hrs) | No. of Utterances |
227
+ |:---------------:|:--------------:|:-----------------:|
228
+ | Assamese | 563.87 | 256,102 |
229
+ | Bengali | 561.18 | 234,663 |
230
+ | Bodo | 637.79 | 320,584 |
231
+ | Chhattisgarhi | 80.11 | 38,148 |
232
+ | Dogri | 263.22 | 109,348 |
233
+ | English | 765.56 | 711,196 |
234
+ | Gujarati | 31.68 | 11,845 |
235
+ | Hindi | 396.75 | 162,343 |
236
+ | Kannada | 364.26 | 154,994 |
237
+ | Kashmiri | 216.17 | 93,343 |
238
+ | Konkani | 205.16 | 91,804 |
239
+ | Maithili | 473.07 | 197,886 |
240
+ | Malayalam | 394.33 | 168,281 |
241
+ | Manipuri | 112.47 | 57,068 |
242
+ | Marathi | 333.32 | 142,925 |
243
+ | Nepali | 542.69 | 244,007 |
244
+ | Odia | 264.16 | 105,469 |
245
+ | Punjabi | 280.48 | 109,795 |
246
+ | Sanskrit | 143.12 | 63,908 |
247
+ | Santali | 298.19 | 148,184 |
248
+ | Sindhi | 66.62 | 27,578 |
249
+ | Tamil | 561.92 | 236,293 |
250
+ | Telugu | 560.76 | 213,858 |
251
+ | Urdu | 268.46 | 112,932 |
252
+
253
+
254
+ ## Citation
255
+
256
+ If you found this repository useful, please consider citing this work and also the original Stability AI paper:
257
+
258
+ ```
259
+ @misc{lacombe-etal-2024-parler-tts,
260
+ author = {Yoach Lacombe and Vaibhav Srivastav and Sanchit Gandhi},
261
+ title = {Parler-TTS},
262
+ year = {2024},
263
+ publisher = {GitHub},
264
+ journal = {GitHub repository},
265
+ howpublished = {\url{https://github.com/huggingface/parler-tts}}
266
+ }
267
+ ```
268
+
269
+ ```
270
+ @misc{lyth2024natural,
271
+ title={Natural language guidance of high-fidelity text-to-speech with synthetic annotations},
272
+ author={Dan Lyth and Simon King},
273
+ year={2024},
274
+ eprint={2402.01912},
275
+ archivePrefix={arXiv},
276
+ primaryClass={cs.SD}
277
+ }
278
+ ```
279
+
280
+ ## License
281
+
282
+ This model is permissively licensed under the Apache 2.0 license.