Text-to-Speech
Transformers
Safetensors
parler_tts
text2text-generation
annotation
ylacombe commited on
Commit
793b78f
Β·
verified Β·
1 Parent(s): a78bda1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -39,7 +39,7 @@ datasets:
39
 
40
  **Indic Parler-TTS** is a multilingual Indic extension of [Parler-TTS Mini](https://huggingface.co/parler-tts/parler-tts-mini-v1.1).
41
 
42
- It is a fine-tuned version, trained on a **8,385 hours** multilingual Indic and English dataset.
43
 
44
  **Indic Parler-TTS Mini** can officially speak in 20 Indic languages, making it comprehensive for regional language technologies, and in English. The **21 languages** supported are: Assamese, Bengali, Bodo, Dogri, English, Gujarati, Hindi, Kannada, Konkani, Maithili, Malayalam, Manipuri, Marathi, Nepali, Odia, Sanskrit, Santali, Sindhi, Tamil, Telugu, and Urdu.
45
 
@@ -93,7 +93,7 @@ The model accepts two primary inputs:
93
  - For other accents, the model allows customization by specifying accent details, such as "A male British speaker" or "A female American speaker," using style transfer for more dynamic and personalized outputs.
94
 
95
  5. **Customizable Output**
96
- IndicParlerTTS offers precise control over various speech characteristics using the **caption** input:
97
 
98
  - **Background Noise**: Adjust the noise level in the audio, from clear to slightly noisy environments.
99
  - **Reverberation**: Control the perceived distance of the voice, from close-sounding to distant-sounding speech.
@@ -107,7 +107,7 @@ The model accepts two primary inputs:
107
 
108
  🚨 Unlike previous versions of Parler-TTS, here we use two tokenizers - one for the prompt and one for the description. 🚨
109
 
110
- **Parler-TTS** has been trained to generate speech with features that can be controlled with a simple text prompt, for example:
111
 
112
  ```py
113
  import torch
@@ -132,7 +132,7 @@ audio_arr = generation.cpu().numpy().squeeze()
132
  sf.write("indic_tts_out.wav", audio_arr, model.config.sampling_rate)
133
  ```
134
 
135
- IndicParlerTTS provides highly effective control over key aspects of speech synthesis using descriptive captions. Below is a summary of what each control parameter can achieve:
136
 
137
  | **Control Type** | **Capabilities** |
138
  |--------------------------|----------------------------------------------------------------------------------|
@@ -146,7 +146,7 @@ IndicParlerTTS provides highly effective control over key aspects of speech synt
146
 
147
  ## 🌍 Switching languages
148
 
149
- The template automatically adapts to the language it detects in the prompt. You don't need to specify the language you want to use. For example, to switch to Hindi, simply use an Hindi prompt:
150
 
151
  ```py
152
  import torch
@@ -266,7 +266,7 @@ Here is the table based on the provided data:
266
 
267
  ## πŸ“ Evaluation
268
 
269
- IndicParlerTTS has been evaluated using a MOS-like framework by native and non-native speakers. The results highlight its exceptional performance in generating natural and intelligible speech, especially for native speakers of Indian languages.
270
 
271
  | **Language** | **Native Speaker Score (%)** | **Highlights** |
272
  |--------------|-------------------------------|--------------------------------------------------------------------------------------------------|
 
39
 
40
  **Indic Parler-TTS** is a multilingual Indic extension of [Parler-TTS Mini](https://huggingface.co/parler-tts/parler-tts-mini-v1.1).
41
 
42
+ It is a fine-tuned version of [Parler-TTS Mini v1.1](https://huggingface.co/parler-tts/parler-tts-mini-v1.1), trained on a **8,385 hours** multilingual Indic and English dataset.
43
 
44
  **Indic Parler-TTS Mini** can officially speak in 20 Indic languages, making it comprehensive for regional language technologies, and in English. The **21 languages** supported are: Assamese, Bengali, Bodo, Dogri, English, Gujarati, Hindi, Kannada, Konkani, Maithili, Malayalam, Manipuri, Marathi, Nepali, Odia, Sanskrit, Santali, Sindhi, Tamil, Telugu, and Urdu.
45
 
 
93
  - For other accents, the model allows customization by specifying accent details, such as "A male British speaker" or "A female American speaker," using style transfer for more dynamic and personalized outputs.
94
 
95
  5. **Customizable Output**
96
+ Indic Parler-TTS offers precise control over various speech characteristics using the **caption** input:
97
 
98
  - **Background Noise**: Adjust the noise level in the audio, from clear to slightly noisy environments.
99
  - **Reverberation**: Control the perceived distance of the voice, from close-sounding to distant-sounding speech.
 
107
 
108
  🚨 Unlike previous versions of Parler-TTS, here we use two tokenizers - one for the prompt and one for the description. 🚨
109
 
110
+ **Indic Parler-TTS** has been trained to generate speech with features that can be controlled with a simple text prompt, for example:
111
 
112
  ```py
113
  import torch
 
132
  sf.write("indic_tts_out.wav", audio_arr, model.config.sampling_rate)
133
  ```
134
 
135
+ Indic Parler-TTS provides highly effective control over key aspects of speech synthesis using descriptive captions. Below is a summary of what each control parameter can achieve:
136
 
137
  | **Control Type** | **Capabilities** |
138
  |--------------------------|----------------------------------------------------------------------------------|
 
146
 
147
  ## 🌍 Switching languages
148
 
149
+ The model automatically adapts to the language it detects in the prompt. You don't need to specify the language you want to use. For example, to switch to Hindi, simply use an Hindi prompt:
150
 
151
  ```py
152
  import torch
 
266
 
267
  ## πŸ“ Evaluation
268
 
269
+ Indic Parler-TTS has been evaluated using a MOS-like framework by native and non-native speakers. The results highlight its exceptional performance in generating natural and intelligible speech, especially for native speakers of Indian languages.
270
 
271
  | **Language** | **Native Speaker Score (%)** | **Highlights** |
272
  |--------------|-------------------------------|--------------------------------------------------------------------------------------------------|