File size: 5,034 Bytes
6b27e19
 
 
 
 
 
 
 
508601d
6b27e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffa3695
6b27e19
ed723ba
 
 
 
 
 
 
 
 
 
 
6b27e19
 
 
d4bce0e
 
 
 
ed723ba
 
 
 
 
 
 
 
 
d4bce0e
 
 
 
ed723ba
 
 
99815a4
ed723ba
99815a4
ed723ba
 
 
 
 
 
 
 
d4bce0e
 
ed723ba
d4bce0e
ed723ba
5867b86
ed723ba
d4bce0e
 
ed723ba
5867b86
ed723ba
6b27e19
d4bce0e
6b27e19
d4bce0e
ffa3695
d4bce0e
6b27e19
 
 
 
 
 
 
 
 
 
 
 
 
d4bce0e
 
6b27e19
 
 
d4bce0e
6b27e19
 
 
 
 
 
d4bce0e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
tags:
- question-generation
- multilingual
- nlp
- indicnlp
datasets:
- ai4bharat/IndicQuestionGeneration
- squad
language:
- as
- bn
- gu
- hi
- kn
- ml
- mr
- or
- pa
- ta
- te
licenses:
- cc-by-nc-4.0


---

# MultiIndicQuestionGenerationSS

MultiIndicQuestionGenerationSS is a multilingual, sequence-to-sequence pre-trained model, a [IndicBARTSS](https://huggingface.co./ai4bharat/IndicBARTSS) checkpoint fine-tuned on the 11 languages of [IndicQuestionGeneration](https://huggingface.co./datasets/ai4bharat/IndicQuestionGeneration) dataset. For fine-tuning details,
see the [paper](https://arxiv.org/abs/2203.05437). You can use MultiIndicQuestionGenerationSS to build question generation applications for Indian languages by fine-tuning the model with supervised training data for the question generation task. Some salient features of the MultiIndicQuestionGenerationSS are:

<ul>
<li >Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Oriya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5. </li>
<li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for finetuning and decoding. </li>
<li> Fine-tuned on large Indic language corpora (770 K examples). </li>
<li> Unlike ai4bharat/MultiIndicQuestionGenerationUnified, each language is written in its own script, so you do not need to perform any script mapping to/from Devanagari. </li>
</ul>

You can read more about MultiIndicQuestionGenerationSS in this <a href="https://arxiv.org/abs/2203.05437">paper</a>.


## Using this model in `transformers`

```
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
from transformers import AlbertTokenizer, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True)

# Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True)

model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS")

# Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS")

# Some initial mapping
bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
# To get lang_id use any of ['<2as>', '<2bn>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>']

# First tokenize the input and outputs. The format below is how IndicBARTSS was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>". 
inp = tokenizer("7 फरवरी, 2016 [SEP] खेल 7 फरवरी, 2016 को कैलिफोर्निया के सांता क्लारा में सैन फ्रांसिस्को खाड़ी क्षेत्र में लेवी स्टेडियम में खेला गया था। </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids 

out = tokenizer("<2hi> सुपर बाउल किस दिन खेला गया? </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids 

model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:])

# For loss
model_outputs.loss ## This is not label smoothed.

# For logits
model_outputs.logits

# For generation. Pardon the messiness. Note the decoder_start_token_id.

model.eval() # Set dropouts to zero

model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>"))

# Decode to get output strings
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)

print(decoded_output) # कब होगा पहला एएफएल गेम?

```

## Benchmarks

Scores on the `IndicQuestionGeneration` test sets are as follows:

Language | RougeL
---------|----------------------------
as | 20.73
bn | 30.38
gu | 28.13
hi | 34.42
kn | 23.77
ml | 22.24
mr | 23.62
or | 27.53
pa | 32.53
ta | 23.49
te | 25.81


## Citation

If you use this model, please cite the following paper:
```
@inproceedings{Kumar2022IndicNLGSM,
  title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages},
  author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar},
  year={2022},
  url = "https://arxiv.org/abs/2203.05437"
  }
```
# License
The model is available under the MIT License.