draj commited on
Commit
8dd19b6
·
2 Parent(s): 39b9215 b3442e9

Merge branch 'main' of https://huggingface.co./prajdabre/IndicBART into main

Browse files
Files changed (1) hide show
  1. README.md +59 -0
README.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ This is the IndicBART model. For detailed documentation look here: https://indicnlp.ai4bharat.org/indic-bart/ and https://github.com/AI4Bharat/indic-bart/
2
+
3
+ Usage:
4
+
5
+ ```
6
+ from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
7
+ from transformers import AlbertTokenizer, AutoTokenizer
8
+
9
+ tokenizer = AlbertTokenizer.from_pretrained("prajdabre/IndicBARTTokenizer", do_lower_case=False, use_fast=False, keep_accents=True)
10
+
11
+ # Or use tokenizer = AutoTokenizer.from_pretrained("prajdabre/IndicBARTTokenizer", do_lower_case=False, use_fast=False, keep_accents=True)
12
+
13
+ model = MBartForConditionalGeneration.from_pretrained("prajdabre/IndicBART")
14
+
15
+ # Or use model = AutoModelForSeq2SeqLM.from_pretrained("prajdabre/IndicBART")
16
+
17
+
18
+ # First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
19
+ inp = tokenizer("I am a boy <\/s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
20
+
21
+ out = tokenizer("<2hi> मैं एक लड़का हूँ <\/s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
22
+
23
+ model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:])
24
+
25
+ # For loss
26
+ model_outputs.loss ## This is not label smoothed.
27
+
28
+ # For logits
29
+ model_outputs.logits
30
+
31
+ # For generation. Pardon the messiness. Note the decoder_start_token_id.
32
+
33
+ model.eval() # Det dropouts to zero
34
+
35
+ model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=tokenizer.pad_token_id, decoder_start_token_id=tokenizer(["<2en>"], add_special_tokens=False).input_ids[0][0])
36
+
37
+
38
+ # Decode to get output strings
39
+
40
+ decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
41
+
42
+ print(decoded_output) # I am a boy
43
+
44
+ # What if we mask?
45
+
46
+ inp = tokenizer("I am [MASK] </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
47
+
48
+ model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=tokenizer.pad_token_id, decoder_start_token_id=tokenizer(["<2en>"], add_special_tokens=False).input_ids[0][0])
49
+
50
+ decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
51
+
52
+ print(decoded_output) # I am happy
53
+ ```
54
+
55
+ Notes:
56
+ 1. This is compatible with the latest version of transformers but was developed with version 4.3.2 so consider using 4.3.2 if possible.
57
+ 2. The tokenizer repo is kept separate from the model repo because unlike mBART-25 and mBART-50 which use a BPE model (MBartTokenizer class) whereas we use the sentencepiece model (AlbertTokenizer class).
58
+ 3. Currently, keeping the tokenizer and model files in the same repo complicates things so keeping them separate is a temporary solution. This will be fixed in future versions.
59
+ 4. While I have only shown how to let logits and loss and how to generate outputs, you can do pretty much everything the MBartForConditionalGeneration class can do as in https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartForConditionalGeneration