File size: 16,464 Bytes
87b774f 33ad73c 87b774f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
---
license: other
license_name: jamba-open-model-license
license_link: https://www.ai21.com/jamba-open-model-license/
library_name: transformers
---
# Model Information
Built with hybrid SSM-Transformer architecture, the Jamba 1.6 family of models outperform other open, instruction-following foundation models on quality, speed, and long context performance, and rival leading closed models on quality. As open models, Jamba Mini 1.6 (12B active/52B total) and Jamba Large 1.6 (94B active/398B total) are available for private deployment, either in VPC or on-premise, and demonstrate superior performance on the kind of long context tasks that matter most to enterprises, such as RAG workflows and grounded question answering across lengthy documents.
The models are released under the Jamba Open Model License, a permissive license allowing full research use and commercial use under the license terms.
If you need to license the model for your needs, talk to us.
For more details of this model, see the release [blog post](https://www.ai21.com/blog/introducing-jamba-1-6).
## Model Details
- **Developed by:** [AI21](https://www.ai21.com)
- **Model type:** Joint Attention and Mamba (Jamba)
- **License:** [Jamba Open Model License](https://www.ai21.com/licenses/jamba-open-model-license)
- **Context length:** 256K
- **Knowledge cutoff date:** March 5, 2024
- **Supported languages:** English, Spanish, French, Portuguese, Italian, Dutch, German, Arabic and Hebrew
## Results on common benchmarks
| Benchmark | Jamba Mini 1.6 | Ministral 8B | Llama 3.1 8B | Command R7B |
|--------------|:-----:|:-----:|:-----:|:-----:|
| Arena Hard | 51.2| 41.35| 28.17| 27.95|
| CRAG | 76.2| 52| 60| 23.1|
| FinanceBench (FullDoc) | 45.4 | 19.2 | 28.4 | 2.8|
| HELMET LongQA | 46.9 | 33 | 29.2| 9.6|
| LongBench | 32 | 17.5 | 17.7 | 2|
LongBench and Arena Hard scores are from official leaderboards for applicable models. Examples that couldn't fit models' context windows were scored accordingly. Due to a 32K context limit in its vLLM deployment, Ministral 8B was evaluated through its official API.
# Usage
## Prerequisites
In order to run optimized Mamba implementations, you first need to install `mamba-ssm` and `causal-conv1d`:
```bash
pip install mamba-ssm causal-conv1d>=1.2.0
```
You also have to have the model on a CUDA device.
## Run the model with vLLM
The recommended way to perform efficient inference with Jamba Mini 1.6 is using [vLLM](https://docs.vllm.ai/en/latest/). First, make sure to install vLLM (version 0.5.4 or higher is required)
```bash
pip install vllm>=0.5.4
```
In the example below, `number_gpus` should match the number of GPUs you want to deploy Jamba Mini 1.6 on. A minimum of 2 80GB GPUs is required.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model = "ai21labs/AI21-Jamba-Mini-1.6"
number_gpus = 2
llm = LLM(model=model,
max_model_len=200*1024,
tensor_parallel_size=number_gpus)
tokenizer = AutoTokenizer.from_pretrained(model)
messages = [
{"role": "system", "content": "You are an ancient oracle who speaks in cryptic but wise phrases, always hinting at deeper meanings."},
{"role": "user", "content": "Hello!"},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
sampling_params = SamplingParams(temperature=0.4, top_p=0.95, max_tokens=100)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
#Output: Seek and you shall find. The path is winding, but the journey is enlightening. What wisdom do you seek from the ancient echoes?
```
With the default BF16 precision on 2 80GB A100 GPUs and default vLLM configuration, you'll be able to perform inference on prompts up to 200K tokens long. On more than 2 80GB GPUs, you can easily fit the full 256K context.
<u>Note:</u> vLLM's `main` branch has some memory utilization improvements specific to the Jamba architecture that allow using the full 256K context length on 2 80 GPUs. You can [build vLLM from source](https://docs.vllm.ai/en/latest/getting_started/installation.html#build-from-source) if you wish to make use of them.
### ExpertsInt8 quantization
We've developed an innovative and efficient quantization technique, [ExpertsInt8](https://www.ai21.com/blog/announcing-jamba-model-family#:~:text=Like%20all%20models%20in%20its%20size%20class%2C%20Jamba%201.6%20Large%20can%E2%80%99t%20be%20loaded%20in%20full%20(FP32)%20or%20half%20(FP16/BF16)%20precision%20on%20a%20single%20node%20of%208%20GPUs.%20Dissatisfied%20with%20currently%20available%20quantization%20techniques%2C%20we%20developed%20ExpertsInt8%2C%20a%20novel%20quantization%20technique%20tailored%20for%20MoE%20models.), designed for MoE models deployed in vLLM, including Jamba models. Using it, you'll be able to deploy Jamba Mini 1.6 on a single 80GB GPU.
In order to use ExpertsInt8, you need to use vllm version 0.5.5 or higher: `pip install vllm>=0.5.5`
With default vLLM configuration, you can fit prompts up to 100K on a single 80GB A100 GPU:
```python
import os
os.environ['VLLM_FUSED_MOE_CHUNK_SIZE']='32768' # This is a workaround a bug in vLLM's fused_moe kernel
from vllm import LLM
llm = LLM(model="ai21labs/AI21-Jamba-Mini-1.6",
max_model_len=100*1024,
quantization="experts_int8")
```
## Run the model with `transformers`
The following example loads Jamba Mini 1.6 to the GPU in BF16 precision, uses optimized [FlashAttention2](https://github.com/Dao-AILab/flash-attention) and Mamba kernels, and parallelizes the model across multiple GPUs using [accelerate](https://huggingface.co./docs/accelerate/index). Note that in half precision (FP16/BF16), Jamba Mini 1.6 is too large to fit on a single 80GB GPU, so you'll need at least 2 such GPUs.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6")
messages = [
{"role": "system", "content": "You are an ancient oracle who speaks in cryptic but wise phrases, always hinting at deeper meanings."},
{"role": "user", "content": "Hello!"},
]
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors='pt').to(model.device)
outputs = model.generate(input_ids, max_new_tokens=216)
# Decode the output
conversation = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Split the conversation to get only the assistant's response
assistant_response = conversation.split(messages[-1]['content'])[1].strip()
print(assistant_response)
# Output: Seek and you shall find. The path is winding, but the journey is enlightening. What wisdom do you seek from the ancient echoes?
```
<u>Note:</u> Versions 4.44.0 and 4.44.1 of `transformers` have a bug that restricts the ability to run the Jamba architecture. Make sure you're not using these versions.
<u>Note:</u> If you're having trouble installing `mamba-ssm` and `causal-conv1d` for the optimized Mamba kernels, you can run Jamba Mini 1.6 without them, at the cost of extra latency. In order to do that, add the kwarg `use_mamba_kernels=False` when loading the model via `AutoModelForCausalLM.from_pretained()`.
<details><summary><strong>Load the model in 8-bit</strong></summary>
**Using 8-bit precision, it is possible to fit up to 140K sequence length on a single 80GB GPU.** You can easily quantize the model to 8-bit using [bitsandbytes](https://huggingface.co./docs/bitsandbytes/index). In order to not degrade model quality, we recommend to exclude the Mamba blocks from the quantization:
```python
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True,
llm_int8_skip_modules=["mamba"])
model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
quantization_config=quantization_config)
```
</details>
<details><summary><strong>Load the model on CPU</strong></summary>
If you don't have access to a GPU, you can also load and run Jamba Mini 1.6 on a CPU. Note this will result in poor inference performance.
```python
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6",
use_mamba_kernels=False)
```
</details>
<br>
<br>
# Model features
## Tool use with Jamba
Jamba Mini 1.6 supports tool use capabilities in accordance with Huggingface's tool use API. The tools defined by the user are inserted into a dedicated section in the chat template which the model was trained to recognize.
Given a conversation that contains tools, the model can output content, tool invocations or both.
<details><summary><strong>Tool usage example</strong></summary>
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6")
messages = [
{
"role": "user",
"content": "What's the weather like right now in Jerusalem and in London?"
}
]
tools = [
{
'type': 'function',
'function': {
'name': 'get_current_weather',
'description': 'Get the current weather',
'parameters': {
'type': 'object',
'properties': {
'location': {'type': 'string', 'description': 'The city and state, e.g. San Francisco, CA'},
'format': {'type': 'string', 'enum': ['celsius', 'fahrenheit'], 'description': 'The temperature unit to use. Infer this from the users location.'}
},
'required': ['location', 'format']
}
}
}
]
prompt = tokenizer.apply_chat_template(
messages,
tools=tools,
tokenize=False,
)
```
Output:
```
<tool_calls>[
{"name": "get_current_weather", "arguments": {"location": "Jerusalem", "format": "celsius"}},
{"name": "get_current_weather", "arguments": {"location": "celsius", "format": "celsius"}}
]</tool_calls>
```
</details>
<details><summary><strong>Feeding back tool responses into the model</strong></summary>
Now that the model has called the tools, we need to feed the tool responses back to the model. In the next call, send the assistant message with the `tool_messages` field, as shown below, along with additional `tool` messages (in the corresponding order) that contain the tool outputs.
The `arguments` field for each tool call can be either a dict or a JSON string.
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6")
# Note that you must send the tool responses in the same order as the model called the tools:
messages = [
{
"role": "user",
"content": "What's the weather like right now in Jerusalem and in London?"
},
{
"role": "assistant",
"content": null,
"tool_calls": [
{
"name": "get_current_weather",
"arguments": "{\"location\": \"Jerusalem\", \"format\": \"celsius\"}"
},
{
"name": "get_current_weather",
"arguments": "{\"location\": \"London\", \"format\": \"celsius\"}"
}
]
},
{
"role": "tool",
"content": "The weather in Jerusalem is 18 degrees celsius."
},
{
"role": "tool",
"content": "The weather in London is 8 degrees celsius."
}
]
tool_use_prompt = tokenizer.apply_chat_template(
messages,
tools=tools,
tokenize=False,
)
```
example output:
```
The weather in Jerusalem is currently 18 degrees Celsius. In London, it is 8 degrees Celsius.
```
</details>
## Fine-tuning examples
The examples below use the `SFTTrainer` from [huggingface/trl](https://github.com/huggingface/trl), so ensure it's installed:
```bash
pip install trl
```
## Full Fine-tuning example
To train a full finetune using AWS multi nodes and FSDP configuration, follow the instructions here [hf-finetune-sagemaker](https://github.com/AI21Labs/hf-finetune-sagemaker)
## LoRA example
Here is an example of fine-tuning with LoRA PEFT, in bfloat16 (requires ~130GB GPU RAM, so e.g. 2xA100 80GB):
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import load_dataset
from trl import SFTTrainer, SFTConfig
from peft import LoraConfig
tokenizer = AutoTokenizer.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6")
model = AutoModelForCausalLM.from_pretrained(
"ai21labs/AI21-Jamba-Mini-1.6",
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
)
lora_config = LoraConfig(
r=8,
target_modules=[
"embed_tokens",
"x_proj", "in_proj", "out_proj", # mamba
"gate_proj", "up_proj", "down_proj", # mlp
"q_proj", "k_proj", "v_proj", "o_proj", # attention
],
task_type="CAUSAL_LM",
bias="none",
)
dataset = load_dataset("philschmid/dolly-15k-oai-style", split="train")
training_args = SFTConfig(
output_dir="/dev/shm/results",
logging_dir="./logs",
num_train_epochs=2,
per_device_train_batch_size=4,
learning_rate=1e-5,
logging_steps=10,
gradient_checkpointing=True,
max_seq_length=4096,
save_steps=100,
)
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
peft_config=lora_config,
train_dataset=dataset,
)
trainer.train()
```
Note that the dataset in the example uses conversational format (with `messages` column), so `SFTTrainer` automatically applies Jamba's chat-template as explained in [TRL docs](https://huggingface.co./docs/trl/main/en/sft_trainer#dataset-format-support).
## QLoRA example
To fit fine-tuning on a single 80GB GPU, you can levarage [QLoRA](https://arxiv.org/abs/2305.14314) which combines LoRA with the frozen model quantized to 4-bit:
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from datasets import load_dataset
from trl import SFTTrainer, SFTConfig
from peft import LoraConfig
tokenizer = AutoTokenizer.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6")
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(
"ai21labs/AI21-Jamba-Mini-1.6",
device_map="auto",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
)
lora_config = LoraConfig(
r=8,
target_modules=[
"embed_tokens", "x_proj", "in_proj", "out_proj", # mamba
"gate_proj", "up_proj", "down_proj", # mlp
"q_proj", "k_proj", "v_proj", "o_proj", # attention
],
task_type="CAUSAL_LM",
bias="none",
)
dataset = load_dataset("philschmid/dolly-15k-oai-style", split="train")
training_args = SFTConfig(
output_dir="./results",
logging_dir="./logs",
num_train_epochs=2,
per_device_train_batch_size=8,
learning_rate=1e-5,
logging_steps=1,
gradient_checkpointing=True,
gradient_checkpointing_kwargs={"use_reentrant": False},
save_steps=100,
max_seq_length=4096,
)
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
peft_config=lora_config,
train_dataset=dataset,
)
trainer.train()
```
Note: the above example reqiures the `bitsandbytes` package for the 4-bit quantization:
```bash
pip install bitsandbytes
```
# About AI21
AI21 builds reliable, practical, and scalable AI solutions for the enterprise. The Jamba models are available in the [AI21 Studio](https://www.ai21.com/studio) and in leading cloud partners.
To learn more about how Jamba Mini 1.6 and Jamba Large 1.6 can bring real world value to your organization, let’s talk. |