File size: 16,464 Bytes
87b774f
 
 
 
33ad73c
87b774f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
---
license: other
license_name: jamba-open-model-license
license_link: https://www.ai21.com/jamba-open-model-license/
library_name: transformers
---
# Model Information

Built with hybrid SSM-Transformer architecture, the Jamba 1.6 family of models outperform other open, instruction-following foundation models on quality, speed, and long context performance, and rival leading closed models on quality. As open models, Jamba Mini 1.6 (12B active/52B total) and Jamba Large 1.6 (94B active/398B total) are available for private deployment, either in VPC or on-premise, and demonstrate superior performance on the kind of long context tasks that matter most to enterprises, such as RAG workflows and grounded question answering across lengthy documents.

The models are released under the Jamba Open Model License, a permissive license allowing full research use and commercial use under the license terms.

If you need to license the model for your needs, talk to us.

For more details of this model, see the release [blog post](https://www.ai21.com/blog/introducing-jamba-1-6).
## Model Details

- **Developed by:** [AI21](https://www.ai21.com)
- **Model type:** Joint Attention and Mamba (Jamba)
- **License:** [Jamba Open Model License](https://www.ai21.com/licenses/jamba-open-model-license)
- **Context length:** 256K
- **Knowledge cutoff date:** March 5, 2024
- **Supported languages:** English, Spanish, French, Portuguese, Italian, Dutch, German, Arabic and Hebrew

## Results on common benchmarks

  | Benchmark    | Jamba Mini 1.6 | Ministral 8B | Llama 3.1 8B | Command R7B |
|--------------|:-----:|:-----:|:-----:|:-----:|
| Arena Hard    | 51.2| 41.35| 28.17| 27.95| 
| CRAG | 76.2| 52| 60| 23.1| 
| FinanceBench (FullDoc)  | 45.4 | 19.2 | 28.4 | 2.8|
| HELMET LongQA     | 46.9 | 33 | 29.2| 9.6|
| LongBench | 32 | 17.5 | 17.7 | 2|

LongBench and Arena Hard scores are from official leaderboards for applicable models. Examples that couldn't fit models' context windows were scored accordingly. Due to a 32K context limit in its vLLM deployment, Ministral 8B was evaluated through its official API.
# Usage
## Prerequisites

In order to run optimized Mamba implementations, you first need to install `mamba-ssm` and `causal-conv1d`:
```bash
pip install mamba-ssm causal-conv1d>=1.2.0
```
You also have to have the model on a CUDA device.


## Run the model with vLLM

The recommended way to perform efficient inference with Jamba Mini 1.6 is using [vLLM](https://docs.vllm.ai/en/latest/). First, make sure to install vLLM (version 0.5.4 or higher is required)
```bash
pip install vllm>=0.5.4
```

In the example below, `number_gpus` should match the number of GPUs you want to deploy Jamba Mini 1.6 on. A minimum of 2 80GB GPUs is required.

```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model = "ai21labs/AI21-Jamba-Mini-1.6"
number_gpus = 2

llm = LLM(model=model,
          max_model_len=200*1024,
          tensor_parallel_size=number_gpus)

tokenizer = AutoTokenizer.from_pretrained(model)

messages = [
   {"role": "system", "content": "You are an ancient oracle who speaks in cryptic but wise phrases, always hinting at deeper meanings."},
   {"role": "user", "content": "Hello!"},
]

prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

sampling_params = SamplingParams(temperature=0.4, top_p=0.95, max_tokens=100) 
outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)
#Output: Seek and you shall find. The path is winding, but the journey is enlightening. What wisdom do you seek from the ancient echoes?
```

With the default BF16 precision on 2 80GB A100 GPUs and default vLLM configuration, you'll be able to perform inference on prompts up to 200K tokens long. On more than 2 80GB GPUs, you can easily fit the full 256K context.

<u>Note:</u> vLLM's `main` branch has some memory utilization improvements specific to the Jamba architecture that allow using the full 256K context length on 2 80 GPUs. You can [build vLLM from source](https://docs.vllm.ai/en/latest/getting_started/installation.html#build-from-source) if you wish to make use of them.

### ExpertsInt8 quantization
We've developed an innovative and efficient quantization technique, [ExpertsInt8](https://www.ai21.com/blog/announcing-jamba-model-family#:~:text=Like%20all%20models%20in%20its%20size%20class%2C%20Jamba%201.6%20Large%20can%E2%80%99t%20be%20loaded%20in%20full%20(FP32)%20or%20half%20(FP16/BF16)%20precision%20on%20a%20single%20node%20of%208%20GPUs.%20Dissatisfied%20with%20currently%20available%20quantization%20techniques%2C%20we%20developed%20ExpertsInt8%2C%20a%20novel%20quantization%20technique%20tailored%20for%20MoE%20models.), designed for MoE models deployed in vLLM, including Jamba models. Using it, you'll be able to deploy Jamba Mini 1.6 on a single 80GB GPU.

In order to use ExpertsInt8, you need to use vllm version 0.5.5 or higher: `pip install vllm>=0.5.5`

With default vLLM configuration, you can fit prompts up to 100K on a single 80GB A100 GPU:
```python
import os
os.environ['VLLM_FUSED_MOE_CHUNK_SIZE']='32768'    # This is a workaround a bug in vLLM's fused_moe kernel

from vllm import LLM
llm = LLM(model="ai21labs/AI21-Jamba-Mini-1.6",
          max_model_len=100*1024,
          quantization="experts_int8")
```


## Run the model with `transformers`

The following example loads Jamba Mini 1.6 to the GPU in BF16 precision, uses optimized [FlashAttention2](https://github.com/Dao-AILab/flash-attention) and Mamba kernels, and parallelizes the model across multiple GPUs using [accelerate](https://huggingface.co./docs/accelerate/index). Note that in half precision (FP16/BF16), Jamba Mini 1.6 is too large to fit on a single 80GB GPU, so you'll need at least 2 such GPUs.

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6",
                                             torch_dtype=torch.bfloat16,
                                             attn_implementation="flash_attention_2",
                                             device_map="auto")

tokenizer = AutoTokenizer.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6")

messages = [
   {"role": "system", "content": "You are an ancient oracle who speaks in cryptic but wise phrases, always hinting at deeper meanings."},
   {"role": "user", "content": "Hello!"},
]

input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors='pt').to(model.device)

outputs = model.generate(input_ids, max_new_tokens=216)

# Decode the output
conversation = tokenizer.decode(outputs[0], skip_special_tokens=True)

# Split the conversation to get only the assistant's response
assistant_response = conversation.split(messages[-1]['content'])[1].strip()
print(assistant_response)
# Output: Seek and you shall find. The path is winding, but the journey is enlightening. What wisdom do you seek from the ancient echoes?
```

<u>Note:</u> Versions 4.44.0 and 4.44.1 of `transformers` have a bug that restricts the ability to run the Jamba architecture. Make sure you're not using these versions.

<u>Note:</u> If you're having trouble installing `mamba-ssm` and `causal-conv1d` for the optimized Mamba kernels, you can run Jamba Mini 1.6 without them, at the cost of extra latency. In order to do that, add the kwarg `use_mamba_kernels=False` when loading the model via `AutoModelForCausalLM.from_pretained()`.

<details><summary><strong>Load the model in 8-bit</strong></summary>

  **Using 8-bit precision, it is possible to fit up to 140K sequence length on a single 80GB GPU.** You can easily quantize the model to 8-bit using [bitsandbytes](https://huggingface.co./docs/bitsandbytes/index). In order to not degrade model quality, we recommend to exclude the Mamba blocks from the quantization:

```python
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True,
                                         llm_int8_skip_modules=["mamba"])
model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6",
                                             torch_dtype=torch.bfloat16,
                                             attn_implementation="flash_attention_2",
                                             quantization_config=quantization_config)
```

</details>

<details><summary><strong>Load the model on CPU</strong></summary>

If you don't have access to a GPU, you can also load and run Jamba Mini 1.6 on a CPU. Note this will result in poor inference performance.

```python
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6",
                                             use_mamba_kernels=False)
```
</details>
<br>
<br>

# Model features

## Tool use with Jamba
Jamba Mini 1.6 supports tool use capabilities in accordance with Huggingface's tool use API. The tools defined by the user are inserted into a dedicated section in the chat template which the model was trained to recognize. 

Given a conversation that contains tools, the model can output content, tool invocations or both.

<details><summary><strong>Tool usage example</strong></summary>

  
```python
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6")

messages = [
    {
        "role": "user", 
        "content": "What's the weather like right now in Jerusalem and in London?"
    }
]

tools = [
    {
        'type': 'function', 
        'function': {
            'name': 'get_current_weather', 
            'description': 'Get the current weather', 
            'parameters': {
                'type': 'object', 
                'properties': {
                    'location': {'type': 'string', 'description': 'The city and state, e.g. San Francisco, CA'}, 
                    'format': {'type': 'string', 'enum': ['celsius', 'fahrenheit'], 'description': 'The temperature unit to use. Infer this from the users location.'}
                }, 
                'required': ['location', 'format']
            }
        }
    }
]

prompt = tokenizer.apply_chat_template(
    messages,
    tools=tools,
    tokenize=False,
)
```
Output:
```
<tool_calls>[
    {"name": "get_current_weather", "arguments": {"location": "Jerusalem", "format": "celsius"}},
    {"name": "get_current_weather", "arguments": {"location": "celsius", "format": "celsius"}}
]</tool_calls>
```

</details>


<details><summary><strong>Feeding back tool responses into the model</strong></summary>

Now that the model has called the tools, we need to feed the tool responses back to the model. In the next call, send the assistant message with the `tool_messages` field, as shown below, along with additional `tool` messages (in the corresponding order) that contain the tool outputs.

The `arguments` field for each tool call can be either a dict or a JSON string.

```python
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6")

# Note that you must send the tool responses in the same order as the model called the tools:
messages = [
    {
        "role": "user",
        "content": "What's the weather like right now in Jerusalem and in London?"
    },
    {
        "role": "assistant",
        "content": null,
        "tool_calls": [
            {
                "name": "get_current_weather",
                "arguments": "{\"location\": \"Jerusalem\", \"format\": \"celsius\"}"
            },
            {
                "name": "get_current_weather",
                "arguments": "{\"location\": \"London\", \"format\": \"celsius\"}"
            }
        ]
    },
    {
        "role": "tool",
        "content": "The weather in Jerusalem is 18 degrees celsius."
    },
    {
        "role": "tool",
        "content": "The weather in London is 8 degrees celsius."
    }
]

tool_use_prompt = tokenizer.apply_chat_template(
    messages,
    tools=tools,
    tokenize=False,
)
```
example output:
```
The weather in Jerusalem is currently 18 degrees Celsius. In London, it is 8 degrees Celsius.
```

</details>


## Fine-tuning examples

The examples below use the `SFTTrainer` from [huggingface/trl](https://github.com/huggingface/trl), so ensure it's installed:
```bash
pip install trl
```

## Full Fine-tuning example
To train a full finetune using AWS multi nodes and FSDP configuration, follow the instructions here [hf-finetune-sagemaker](https://github.com/AI21Labs/hf-finetune-sagemaker)

## LoRA example

Here is an example of fine-tuning with LoRA PEFT, in bfloat16 (requires ~130GB GPU RAM, so e.g. 2xA100 80GB):

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import load_dataset
from trl import SFTTrainer, SFTConfig
from peft import LoraConfig

tokenizer = AutoTokenizer.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6")
model = AutoModelForCausalLM.from_pretrained(
    "ai21labs/AI21-Jamba-Mini-1.6",
    device_map="auto",
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
)

lora_config = LoraConfig(
    r=8,
    target_modules=[
        "embed_tokens",
        "x_proj", "in_proj", "out_proj", # mamba
        "gate_proj", "up_proj", "down_proj", # mlp
        "q_proj", "k_proj", "v_proj", "o_proj", # attention
    ],
    task_type="CAUSAL_LM",
    bias="none",
)

dataset = load_dataset("philschmid/dolly-15k-oai-style", split="train")
training_args = SFTConfig(
    output_dir="/dev/shm/results",
    logging_dir="./logs",
    num_train_epochs=2,
    per_device_train_batch_size=4,
    learning_rate=1e-5,
    logging_steps=10,
    gradient_checkpointing=True,
    max_seq_length=4096,
    save_steps=100,
)
trainer = SFTTrainer(
    model=model,
    tokenizer=tokenizer,
    args=training_args,
    peft_config=lora_config,
    train_dataset=dataset,
)
trainer.train()
```

Note that the dataset in the example uses conversational format (with `messages` column), so `SFTTrainer` automatically applies Jamba's chat-template as explained in [TRL docs](https://huggingface.co./docs/trl/main/en/sft_trainer#dataset-format-support).

## QLoRA example

To fit fine-tuning on a single 80GB GPU, you can levarage [QLoRA](https://arxiv.org/abs/2305.14314) which combines LoRA with the frozen model quantized to 4-bit:

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from datasets import load_dataset
from trl import SFTTrainer, SFTConfig
from peft import LoraConfig

tokenizer = AutoTokenizer.from_pretrained("ai21labs/AI21-Jamba-Mini-1.6")
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(
    "ai21labs/AI21-Jamba-Mini-1.6",
    device_map="auto",
    quantization_config=quantization_config,
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
)
lora_config = LoraConfig(
    r=8,
    target_modules=[
        "embed_tokens", "x_proj", "in_proj", "out_proj", # mamba
        "gate_proj", "up_proj", "down_proj",  # mlp
        "q_proj", "k_proj", "v_proj", "o_proj", # attention
    ],
    task_type="CAUSAL_LM",
    bias="none",
)

dataset = load_dataset("philschmid/dolly-15k-oai-style", split="train")
training_args = SFTConfig(
    output_dir="./results",
    logging_dir="./logs",
    num_train_epochs=2,
    per_device_train_batch_size=8,
    learning_rate=1e-5,
    logging_steps=1,
    gradient_checkpointing=True,
    gradient_checkpointing_kwargs={"use_reentrant": False},
    save_steps=100,
    max_seq_length=4096,
)
trainer = SFTTrainer(
    model=model,
    tokenizer=tokenizer,
    args=training_args,
    peft_config=lora_config,
    train_dataset=dataset,
)
trainer.train()
```

Note: the above example reqiures the `bitsandbytes` package for the 4-bit quantization:
```bash
pip install bitsandbytes
```

# About AI21

AI21 builds reliable, practical, and scalable AI solutions for the enterprise. The Jamba models are available in the [AI21 Studio](https://www.ai21.com/studio) and in leading cloud partners.
To learn more about how Jamba Mini 1.6 and Jamba Large 1.6 can bring real world value to your organization, let’s talk.