File size: 9,272 Bytes
76a68e8
c788f82
 
 
 
 
 
76a68e8
c788f82
 
 
 
 
 
09ab83d
c788f82
a460b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76a68e8
09ab83d
c788f82
 
 
 
 
 
09ab83d
c788f82
 
 
 
 
 
 
 
 
 
 
09ab83d
 
 
c788f82
 
 
 
 
 
 
 
 
 
 
 
 
 
09ab83d
c788f82
 
 
 
 
 
 
 
09ab83d
c788f82
 
 
 
 
 
 
 
09ab83d
c788f82
 
 
 
 
 
 
 
09ab83d
c788f82
 
 
 
09ab83d
c788f82
 
 
09ab83d
 
ed51b4a
 
 
09ab83d
c788f82
24341af
 
 
 
09ab83d
24341af
c788f82
 
 
 
 
 
 
 
 
 
 
 
 
09ab83d
c788f82
 
 
1185f22
c788f82
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
language:
- ru
tags:
- spellchecking
- pytorch
- natural language generation
license: mit
metrics:
- precision
- recall
- f1
library_name: transformers
model-index:
- name: sage-fredt5-distilled-95m
  results:
  - task:
      type: text-generation
    dataset:
      type: spellcheck_benchmark
      name: RUSpellRU (spell&punct)
    metrics:
    - name: F1 (spell)
      type: f1_spell
      value: 78.9
      verified: false
    - name: F1 (punct)
      type: f1_punct
      value: 83.6
      verified: false
    - name: F1 (case)
      type: f1_case
      value: 93.5
      verified: false
  - task:
      type: text-generation
    dataset:
      type: spellcheck_benchmark
      name: MultidomainGold (spell&punct)
    metrics:
    - name: F1 (spell)
      type: f1_spell
      value: 73.4
      verified: false
    - name: F1 (punct)
      type: f1_punct
      value: 65
      verified: false
    - name: F1 (case)
      type: f1_case
      value: 77.9
      verified: false
  - task:
      type: text-generation
    dataset:
      type: spellcheck_benchmark
      name: MedSpellchecker (spell&punct)
    metrics:
    - name: F1 (spell)
      type: f1_spell
      value: 64.9
      verified: false
    - name: F1 (punct)
      type: f1_punct
      value: 70
      verified: false
    - name: F1 (case)
      type: f1_case
      value: 68.7
      verified: false
  - task:
      type: text-generation
    dataset:
      type: spellcheck_benchmark
      name: GitHubTypoCorpusRu (spell&punct)
    metrics:
    - name: F1 (spell)
      type: f1_spell
      value: 52.7
      verified: false
    - name: F1 (punct)
      type: f1_punct
      value: 42.1
      verified: false
    - name: F1 (case)
      type: f1_case
      value: 36.3
      verified: false
datasets:
- ai-forever/spellcheck_punctuation_benchmark
---
# sage-fredt5-distilled-95m

![banner](images/sage_banner.jpg)

## Summary

The model corrects spelling and punctuation errors and typos by bringing all the words in the text to the norm of the Russian language.
Corrector is a distilled version of the original model that had been trained based on the [FRED-T5-1.7B](https://huggingface.co./ai-forever/FRED-T5-1.7B) architecture. 
An extensive dataset with “artificial” errors was taken as a training corpus: the corpus was assembled on the basis of the Russian-language Wikipedia and transcripts of Russian-language videos, then typos and spelling errors were automatically introduced into it using the library [SAGE](https://github.com/ai-forever/sage).

## Public references
- [SAGE library announcement](https://youtu.be/yFfkV0Qjuu0), DataFest 2023
- [Paper about synthetic error generation methods](https://www.dialog-21.ru/media/5914/martynovnplusetal056.pdf), Dialogue 2023
- [SAGE EACL 2024 paper](https://aclanthology.org/2024.findings-eacl.10/)


## Examples
| Input | Output |
| --- | --- |
| И не чсно прохожим в этот день непогожйи почему я веселый такйо | И не ясно прохожим в этот день непогожий, почему я весёлый такой? |
| Каждй день воттак делой, и спена балеть нибудет. А вотак каждый день ниделай | Каждый день вот так делай, и спена болеть не будет. А вот так каждый день — ни делай. |
| Основая цель мероприятия  практическая отработка навыков по оказанию помощи гражданам, попавшим в ДТП а также повышение и совершенствование уровня профессиональной подготовки сотрудников МЧС при проведении аварийно-спасательных работ по ликвидации последствий дорожно-транспортных проишествий сокращение временных показателей реагирования. | Основная цель мероприятия - практическая отработка навыков по оказанию помощи гражданам, попавшим в ДТП, а также повышение и совершенствование уровня профессиональной подготовки сотрудников МЧС при проведении аварийно-спасательных работ по ликвидации последствий дорожно-транспортных происшествий, сокращение временных показателей реагирования. |
|  |  |

## Metrics
### Quality
Below are automatic metrics for determining the correctness of the spell checkers. 
We compare our solution with both open automatic spell checkers and the ChatGPT family of models on all four available datasets:
- **RUSpellRU**: texts collected from ([LiveJournal](https://www.livejournal.com/media)), with manually corrected typos and errors;
- **MultidomainGold**: examples from 7 text sources, including the open web, news, social media, reviews, subtitles, policy documents and literary works;
- **MedSpellChecker**: texts with errors from medical anamnesis;
- **GitHubTypoCorpusRu**: spelling errors and typos in commits from [GitHub](https://github.com);

**RUSpellRU**
| Model | Pr. (spell) | Rec. (spell) | F1 (spell) | Pr. (punc) | Rec. (punc) | F1 (punc) | Pr. (case) | Rec. (case) | F1 (case) |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | 
| sage-fredt5-distilled-95m | 83.5 | 74.8 | 78.9 | 86.8 | 80.6 | 83.6 | 94.4 | 92.5 | 93.5 |
| sage-ai-service | 90.3 | 86.3 | 88.2 | 90.3 | 86.6 | 88.4 | 95.2 | 95.9 | 95.6 |
| gpt-3.5-turbo | 33.6 | 58.5 | 42.7 | 85.9 | 64.6 | 73.7 | 84.9 | 73.9 | 79.0 |
| gpt-4 | 54.9 | 76.7 | 64.0 | 84.0 | 82.3 | 83.2 | 91.5 | 90.2 | 90.9 |


**MultidomainGold**
| Model | Pr. (spell) | Rec. (spell) | F1 (spell) | Pr. (punc) | Rec. (punc) | F1 (punc) | Pr. (case) | Rec. (case) | F1 (case) |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | 
| sage-fredt5-distilled-95m | 77.2 | 69.9 | 73.4 | 66.8 | 63.4 | 65.0 | 76.8 | 79.1 | 77.9 |
| sage-ai-service | 81.6 | 77.7 | 79.6 | 70.2 | 67.5 | 68.8 | 80.5 | 80.5 | 80.5 |
| gpt-3.5-turbo | 18.8 | 48.1 | 27.1 | 42.0 | 31.8 | 36.2 | 47.1 | 51.3 | 49.1 |
| gpt-4 | 25.4 | 68.0 | 37.0 | 57.8 | 54.3 | 56.0 | 54.0 | 67.5 | 60.0 |


**MedSpellChecker**
| Model | Pr. (spell) | Rec. (spell) | F1 (spell) | Pr. (punc) | Rec. (punc) | F1 (punc) | Pr. (case) | Rec. (case) | F1 (case) |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | 
| sage-fredt5-distilled-95m | 65.1 | 64.8 | 64.9 | 78.6 | 63.1 | 70.0 | 63.5 | 74.7 | 68.7 |
| sage-ai-service | 71.3 | 73.5 | 72.4 | 75.1 | 69.2 | 72.0 | 80.9 | 72.8 | 76.6|
| gpt-3.5-turbo | 14.7 | 45.9 | 22.3 | 69.9 | 52.3 | 59.8 | 26.4 | 41.8 | 32.3 |
| gpt-4 | 37.8 | 72.3 | 49.6 | 81.4 | 64.3 | 71.9 | 73.0 | 62.1 | 67.1 |


**GitHubTypoCorpusRu**
| Model | Pr. (spell) | Rec. (spell) | F1 (spell) | Pr. (punc) | Rec. (punc) | F1 (punc) | Pr. (case) | Rec. (case) | F1 (case) |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | 
| sage-fredt5-distilled-95m | 57.8 | 48.5 | 52.7 | 45.2 | 39.5 | 42.1 | 29.9 | 46.2 | 36.3 |
| sage-ai-service | 70.8 | 56.3 | 62.7 | 48.9 | 35.8 | 41.4 | 32.9 | 45.3 | 38.1|
| gpt-3.5-turbo | 23.7 | 38.7 | 29.4 | 37.6 | 23.3 | 28.7 | 19.6 | 35.9 | 25.3 |
| gpt-4 | 27.0 | 52.8 | 35.7 | 45.9 | 32.6 | 38.2 | 25.7 | 36.8 | 30.2 |


## How to use
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("ai-forever/sage-fredt5-distilled-95m")
model = AutoModelForSeq2SeqLM.from_pretrained("ai-forever/sage-fredt5-distilled-95m")

model.to("cuda")

sentence = "И не чсно прохожим в этот день непогожйи почему я веселый такйо"
inputs = tokenizer(sentence, max_length=None, padding="longest", truncation=False, return_tensors="pt")
outputs = model.generate(**inputs.to(model.device), max_length = inputs["input_ids"].size(1) * 1.5)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))

# ["И не ясно прохожим в этот день непогожий, почему я весёлый такой?"]

```

## Limitations
- Complex formatting may cause some trouble in output generation.

## Resources
- [SAGE library](https://github.com/ai-forever/sage), GitHub
- [sage-fredt5-large](https://huggingface.co./ai-forever/sage-fredt5-large), HuggingFace
- [sage-fredt5-distilled-95m](https://huggingface.co./ai-forever/sage-fredt5-distilled-95m), HuggingFace
- [sage-m2m100-1.2B](https://huggingface.co./ai-forever/sage-m2m100-1.2B), HuggingFace
- [sage-mt5-large](https://huggingface.co./ai-forever/sage-mt5-large), HuggingFace

## License
Model [FRED-T5-1.7B](https://huggingface.co./ai-forever/FRED-T5-1.7B), on the basis of which our solution is made, and its source code are supplied under the MIT license. 
Our solution comes with MIT license also.

## Specifications
- File size: 0.383 Gb;
- Framework: pytorch
- Version: v1.0
- Developer: SberDevices, AGI NLP

## Contacts
[email protected]