ai-forever commited on
Commit
cb99dd4
·
1 Parent(s): 9f49a85

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -55
README.md CHANGED
@@ -1,68 +1,68 @@
1
  ---
2
  license: apache-2.0
3
  language:
4
- - en
5
- - az
6
- - sw
7
- - af
8
  - ar
9
- - ba
10
- - be
11
- - bxr
12
- - bg
13
- - bn
14
- - cv
 
 
 
 
 
 
15
  - hy
 
 
 
 
 
16
  - da
 
17
  - de
18
- - el
19
- - es
20
- - eu
21
- - fa
22
- - fi
23
  - fr
24
- - he
25
- - hi
26
- - hu
27
- - kk
28
- - id
29
  - it
 
 
 
 
 
 
 
30
  - ja
31
  - ka
32
- - ky
33
  - ko
34
- - lt
35
- - lv
 
36
  - mn
37
- - ml
38
- - os
39
- - mr
40
- - ms
41
- - my
42
- - nl
43
- - ro
44
- - pl
45
- - pt
46
- - sah
47
  - ru
48
- - tg
49
- - sv
50
- - ta
51
- - te
52
- - tk
53
- - th
54
- - tr
55
- - tl
56
- - tt
57
- - tyv
58
  - uk
59
- - en
60
- - ur
61
- - vi
62
  - uz
63
- - yo
64
- - zh
65
- - xal
 
 
 
 
 
 
 
 
 
 
 
66
  pipeline_tag: text-generation
67
  tags:
68
  - multilingual
@@ -80,7 +80,7 @@ thumbnail: "https://github.com/sberbank-ai/mgpt"
80
 
81
  # Multilingual GPT model
82
 
83
- We introduce a family of autoregressive GPT-like models with 1.3 billion parameters trained on 60 languages from 25 language families using Wikipedia and Colossal Clean Crawled Corpus.
84
 
85
  We reproduce the GPT-3 architecture using GPT-2 sources and the sparse attention mechanism, [Deepspeed](https://github.com/microsoft/DeepSpeed) and [Megatron](https://github.com/NVIDIA/Megatron-LM) frameworks allows us to effectively parallelize the training and inference steps. The resulting models show performance on par with the recently released [XGLM](https://arxiv.org/pdf/2112.10668.pdf) models at the same time covering more languages and enhancing NLP possibilities for low resource languages.
86
 
@@ -118,15 +118,15 @@ The source code for the mGPT XL model is available on [Github](https://github.co
118
 
119
  ## Languages
120
 
121
- Model supports 60 languages:
122
 
123
  ISO codes:
124
- ```az, sw, af, ar, ba, be, bxr, bg, bn, cv, hy, da, de, el, es, eu, fa, fi, fr, he, hi, hu, kk, id, it, ja, ka, ky, ko, lt, lv, mn, ml, os, mr, ms, my, nl, ro, pl, pt, sah, ru, tg, sv, ta, te, tk, th, tr, tl, tt, tyv, uk, en, ur, vi, uz, yo, zh, xal```
125
 
126
 
127
  Languages:
128
 
129
- ```Afrikaans, Azerbaijani, Belarusian, Bengali, Chuvash, German, English, Basque, Finnish, Hebrew (modern), Hungarian, Indonesian, Japanese, Kazakh, Kirghiz, Kyrgyz, Latvian, Mongolian, Malay, Dutch, Polish, Romanian, Moldavan, Yakut, Swahili, Telugu, Thai, Turkish, Tuvinian, Urdu, Vietnamese, Yoruba, Arabic, Bashkir, Bulgarian, Buriat, Danish, Greek, Modern, Spanish; Castilian, Persian, French, Hindi, Armenian, Italian, Georgian, Korean, Lithuanian, Malayalam, Marathi, Burmese, Ossetian, Ossetic, Portuguese, Russian, Swedish, Tamil, Tajik, Turkmen, Tatar, Ukrainian, Uzbek, Kalmyk, Chinese```
130
 
131
  ## Training Data Statistics
132
 
@@ -138,6 +138,6 @@ Languages:
138
 
139
 
140
  ## Details
141
- The model was trained with sequence length 512 using Megatron and Deepspeed libs by [SberDevices](https://sberdevices.ru/) team on a dataset of 600 GB of texts in 60 languages. The model has seen 440 billion BPE tokens in total.
142
 
143
- Total training time was around 12 days on 256 Nvidia V100 GPUs.
 
1
  ---
2
  license: apache-2.0
3
  language:
 
 
 
 
4
  - ar
5
+ - he
6
+ - vi
7
+ - id
8
+ - jv
9
+ - ms
10
+ - tl
11
+ - lv
12
+ - lt
13
+ - eu
14
+ - ml
15
+ - ta
16
+ - te
17
  - hy
18
+ - bn
19
+ - mr
20
+ - hi
21
+ - ur
22
+ - af
23
  - da
24
+ - en
25
  - de
26
+ - sv
 
 
 
 
27
  - fr
 
 
 
 
 
28
  - it
29
+ - pt
30
+ - ro
31
+ - es
32
+ - el
33
+ - os
34
+ - tg
35
+ - fa
36
  - ja
37
  - ka
 
38
  - ko
39
+ - th
40
+ - bxr
41
+ - xal
42
  - mn
43
+ - sw
44
+ - yo
45
+ - be
46
+ - bg
 
 
 
 
 
 
47
  - ru
 
 
 
 
 
 
 
 
 
 
48
  - uk
49
+ - pl
50
+ - my
 
51
  - uz
52
+ - ba
53
+ - kk
54
+ - ky
55
+ - tt
56
+ - az
57
+ - cv
58
+ - tr
59
+ - tk
60
+ - tyv
61
+ - sax
62
+ - et
63
+ - fi
64
+ - hu
65
+
66
  pipeline_tag: text-generation
67
  tags:
68
  - multilingual
 
80
 
81
  # Multilingual GPT model
82
 
83
+ We introduce a family of autoregressive GPT-like models with 1.3 billion parameters trained on 61 languages from 25 language families using Wikipedia and Colossal Clean Crawled Corpus.
84
 
85
  We reproduce the GPT-3 architecture using GPT-2 sources and the sparse attention mechanism, [Deepspeed](https://github.com/microsoft/DeepSpeed) and [Megatron](https://github.com/NVIDIA/Megatron-LM) frameworks allows us to effectively parallelize the training and inference steps. The resulting models show performance on par with the recently released [XGLM](https://arxiv.org/pdf/2112.10668.pdf) models at the same time covering more languages and enhancing NLP possibilities for low resource languages.
86
 
 
118
 
119
  ## Languages
120
 
121
+ Model supports 61 languages:
122
 
123
  ISO codes:
124
+ ```ar he vi id jv ms tl lv lt eu ml ta te hy bn mr hi ur af da en de sv fr it pt ro es el os tg fa ja ka ko th bxr xal mn sw yo be bg ru uk pl my uz ba kk ky tt az cv tr tk tyv sax et fi hu```
125
 
126
 
127
  Languages:
128
 
129
+ ```Arabic, Hebrew, Vietnamese, Indonesian, Javanese, Malay, Tagalog, Latvian, Lithuanian, Basque, Malayalam, Tamil, Telugu, Armenian, Bengali, Marathi, Hindi, Urdu, Afrikaans, Danish, English, German, Swedish, French, Italian, Portuguese, Romanian, Spanish, Greek, Ossetian, Tajik, Persian, Japanese, Georgian, Korean, Thai, Buryat, Kalmyk, Mongolian, Swahili, Yoruba, Belarusian, Bulgarian, Russian, Ukrainian, Polish, Burmese, Uzbek, Bashkir, Kazakh, Kyrgyz, Tatar, Azerbaijani, Chuvash, Turkish, Turkmen, Tuvan, Yakut, Estonian, Finnish, Hungarian```
130
 
131
  ## Training Data Statistics
132
 
 
138
 
139
 
140
  ## Details
141
+ The model was trained with sequence length 512 using Megatron and Deepspeed libs by [SberDevices](https://sberdevices.ru/) team on a dataset of 600 GB of texts in 61 languages. The model has seen 440 billion BPE tokens in total.
142
 
143
+ Total training time was around 14 days on 256 Nvidia V100 GPUs.