File size: 1,200 Bytes
a86fc61 0a00b8e a86fc61 0a00b8e a86fc61 0a00b8e a86fc61 0a00b8e a86fc61 68145b6 0a00b8e a86fc61 0a00b8e a86fc61 0a00b8e 8110204 0a00b8e 8110204 0a00b8e a86fc61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
---
language:
- ru
- en
tags:
- PyTorch
thumbnail: "https://github.com/sberbank-ai/Real-ESRGAN"
---
# Real-ESRGAN
PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original version. It is also easier to integrate this model into your projects.
Real-ESRGAN is an upgraded ESRGAN trained with pure synthetic data is capable of enhancing details while removing annoying artifacts for common real-world images.
- [Paper](https://arxiv.org/abs/2107.10833)
- [Original implementation](https://github.com/xinntao/Real-ESRGAN)
- [Our github](https://github.com/sberbank-ai/Real-ESRGAN)
## Usage
Code for using model you can obtain in our [repo](https://github.com/sberbank-ai/Real-ESRGAN).
```python
import torch
from PIL import Image
import numpy as np
from RealESRGAN import RealESRGAN
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = RealESRGAN(device, scale=4)
model.load_weights('weights/RealESRGAN_x4.pth', download=True)
path_to_image = 'inputs/lr_image.png'
image = Image.open(path_to_image).convert('RGB')
sr_image = model.predict(image)
sr_image.save('results/sr_image.png')
``` |