--- license: mit base_model: facebook/bart-large-cnn tags: - generated_from_trainer metrics: - rouge model-index: - name: PTS-Bart-Large-CNN results: [] pipeline_tag: summarization --- # PTS-Bart-Large-CNN This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the PTS dataset. It achieves the following results on the evaluation set: - Loss: 1.0177 - Rouge1: 0.6339 - Rouge2: 0.4113 - Rougel: 0.5344 - Rougelsum: 0.5338 - Gen Len: 76.1278 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 180 | 0.9026 | 0.6109 | 0.3819 | 0.5098 | 0.5094 | 76.9722 | | No log | 2.0 | 360 | 0.9012 | 0.6273 | 0.4054 | 0.5285 | 0.5284 | 76.3833 | | 0.6717 | 3.0 | 540 | 0.9357 | 0.6312 | 0.4071 | 0.5297 | 0.5295 | 76.25 | | 0.6717 | 4.0 | 720 | 1.0177 | 0.6339 | 0.4113 | 0.5344 | 0.5338 | 76.1278 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1