ahmeddbahaa
commited on
Commit
·
2d1694c
1
Parent(s):
27be6d7
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- summarization
|
5 |
+
- mT5_multilingual_XLSum
|
6 |
+
- mt5
|
7 |
+
- abstractive summarization
|
8 |
+
- ar
|
9 |
+
- xlsum
|
10 |
+
- generated_from_trainer
|
11 |
+
datasets:
|
12 |
+
- xlsum
|
13 |
+
model-index:
|
14 |
+
- name: mt5-base-finetune-ar-xlsum
|
15 |
+
results: []
|
16 |
+
---
|
17 |
+
|
18 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
19 |
+
should probably proofread and complete it, then remove this comment. -->
|
20 |
+
|
21 |
+
# mt5-base-finetune-ar-xlsum
|
22 |
+
|
23 |
+
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the xlsum dataset.
|
24 |
+
It achieves the following results on the evaluation set:
|
25 |
+
- Loss: 3.2546
|
26 |
+
- Rouge-1: 22.2
|
27 |
+
- Rouge-2: 9.57
|
28 |
+
- Rouge-l: 20.26
|
29 |
+
- Gen Len: 19.0
|
30 |
+
- Bertscore: 71.43
|
31 |
+
|
32 |
+
## Model description
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Intended uses & limitations
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training and evaluation data
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training procedure
|
45 |
+
|
46 |
+
### Training hyperparameters
|
47 |
+
|
48 |
+
The following hyperparameters were used during training:
|
49 |
+
- learning_rate: 0.0005
|
50 |
+
- train_batch_size: 4
|
51 |
+
- eval_batch_size: 4
|
52 |
+
- seed: 42
|
53 |
+
- gradient_accumulation_steps: 16
|
54 |
+
- total_train_batch_size: 64
|
55 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
+
- lr_scheduler_type: linear
|
57 |
+
- lr_scheduler_warmup_steps: 250
|
58 |
+
- num_epochs: 10
|
59 |
+
- label_smoothing_factor: 0.1
|
60 |
+
|
61 |
+
### Training results
|
62 |
+
|
63 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore |
|
64 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|
|
65 |
+
| 4.9261 | 1.0 | 585 | 3.6314 | 18.19 | 6.49 | 16.37 | 19.0 | 70.17 |
|
66 |
+
| 3.8429 | 2.0 | 1170 | 3.4253 | 19.45 | 7.58 | 17.73 | 19.0 | 70.35 |
|
67 |
+
| 3.6311 | 3.0 | 1755 | 3.3569 | 20.83 | 8.54 | 18.9 | 19.0 | 70.89 |
|
68 |
+
| 3.4917 | 4.0 | 2340 | 3.3101 | 20.77 | 8.53 | 18.89 | 19.0 | 70.98 |
|
69 |
+
| 3.3873 | 5.0 | 2925 | 3.2867 | 21.47 | 9.0 | 19.54 | 19.0 | 71.23 |
|
70 |
+
| 3.3037 | 6.0 | 3510 | 3.2693 | 21.41 | 9.0 | 19.5 | 19.0 | 71.21 |
|
71 |
+
| 3.2357 | 7.0 | 4095 | 3.2581 | 22.05 | 9.36 | 20.04 | 19.0 | 71.43 |
|
72 |
+
| 3.1798 | 8.0 | 4680 | 3.2522 | 22.21 | 9.56 | 20.23 | 19.0 | 71.41 |
|
73 |
+
| 3.1359 | 9.0 | 5265 | 3.2546 | 22.27 | 9.58 | 20.23 | 19.0 | 71.46 |
|
74 |
+
| 3.0997 | 10.0 | 5850 | 3.2546 | 22.2 | 9.57 | 20.26 | 19.0 | 71.43 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.19.4
|
80 |
+
- Pytorch 1.11.0+cu113
|
81 |
+
- Datasets 2.2.2
|
82 |
+
- Tokenizers 0.12.1
|