--- tags: - summarization - persian - MBart50 - Abstractive Summarization - generated_from_trainer datasets: - xlsum model-index: - name: mbart-large-50-finetuned-persian results: [] --- # mbart-large-50-finetuned-persian This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co./facebook/mbart-large-50) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 4.1932 - Rouge-1: 26.11 - Rouge-2: 8.11 - Rouge-l: 21.09 - Gen Len: 37.29 - Bertscore: 71.08 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 5.5612 | 1.0 | 1476 | 4.5015 | 17.07 | 3.14 | 13.54 | 47.49 | 66.83 | | 4.3049 | 2.0 | 2952 | 4.1055 | 22.63 | 5.89 | 18.03 | 40.43 | 69.23 | | 3.8154 | 3.0 | 4428 | 3.9822 | 24.57 | 7.15 | 19.74 | 37.35 | 70.36 | | 3.3401 | 4.0 | 5904 | 4.0088 | 25.84 | 7.96 | 20.95 | 37.56 | 70.83 | | 2.8879 | 5.0 | 7380 | 4.1932 | 26.24 | 8.26 | 21.23 | 37.78 | 71.05 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1