ahmeddbahaa
commited on
Commit
·
69531cb
1
Parent(s):
e9e72d0
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- summarization
|
4 |
+
- mT5_multilingual_XLSum
|
5 |
+
- mt5
|
6 |
+
- abstractive summarization
|
7 |
+
- ar
|
8 |
+
- xlsum
|
9 |
+
- generated_from_trainer
|
10 |
+
datasets:
|
11 |
+
- xlsum
|
12 |
+
model-index:
|
13 |
+
- name: mT5_multilingual_XLSum-finetune-ar-xlsum
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# mT5_multilingual_XLSum-finetune-ar-xlsum
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on the xlsum dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 3.2497
|
25 |
+
- Rouge-1: 32.52
|
26 |
+
- Rouge-2: 14.71
|
27 |
+
- Rouge-l: 27.88
|
28 |
+
- Gen Len: 41.45
|
29 |
+
- Bertscore: 74.65
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 0.0005
|
49 |
+
- train_batch_size: 4
|
50 |
+
- eval_batch_size: 4
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 16
|
53 |
+
- total_train_batch_size: 64
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: linear
|
56 |
+
- lr_scheduler_warmup_steps: 250
|
57 |
+
- num_epochs: 8
|
58 |
+
- label_smoothing_factor: 0.1
|
59 |
+
|
60 |
+
### Training results
|
61 |
+
|
62 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore |
|
63 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|
|
64 |
+
| 3.5465 | 1.0 | 585 | 3.3215 | 30.09 | 13.23 | 26.07 | 36.31 | 73.97 |
|
65 |
+
| 3.3564 | 2.0 | 1170 | 3.2547 | 31.29 | 13.93 | 26.75 | 41.68 | 74.22 |
|
66 |
+
| 3.2185 | 3.0 | 1755 | 3.2421 | 31.78 | 14.1 | 27.07 | 41.64 | 74.4 |
|
67 |
+
| 3.1145 | 4.0 | 2340 | 3.2241 | 31.98 | 14.38 | 27.51 | 40.29 | 74.46 |
|
68 |
+
| 3.031 | 5.0 | 2925 | 3.2313 | 32.3 | 14.67 | 27.83 | 39.81 | 74.61 |
|
69 |
+
| 2.9627 | 6.0 | 3510 | 3.2348 | 32.39 | 14.65 | 27.76 | 40.02 | 74.6 |
|
70 |
+
| 2.9088 | 7.0 | 4095 | 3.2439 | 32.5 | 14.66 | 27.81 | 41.2 | 74.65 |
|
71 |
+
| 2.8649 | 8.0 | 4680 | 3.2497 | 32.52 | 14.71 | 27.88 | 41.45 | 74.65 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.19.4
|
77 |
+
- Pytorch 1.11.0+cu113
|
78 |
+
- Datasets 2.2.2
|
79 |
+
- Tokenizers 0.12.1
|