ahmeddbahaa commited on
Commit
69531cb
·
1 Parent(s): e9e72d0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - summarization
4
+ - mT5_multilingual_XLSum
5
+ - mt5
6
+ - abstractive summarization
7
+ - ar
8
+ - xlsum
9
+ - generated_from_trainer
10
+ datasets:
11
+ - xlsum
12
+ model-index:
13
+ - name: mT5_multilingual_XLSum-finetune-ar-xlsum
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # mT5_multilingual_XLSum-finetune-ar-xlsum
21
+
22
+ This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on the xlsum dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 3.2497
25
+ - Rouge-1: 32.52
26
+ - Rouge-2: 14.71
27
+ - Rouge-l: 27.88
28
+ - Gen Len: 41.45
29
+ - Bertscore: 74.65
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 0.0005
49
+ - train_batch_size: 4
50
+ - eval_batch_size: 4
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 16
53
+ - total_train_batch_size: 64
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: linear
56
+ - lr_scheduler_warmup_steps: 250
57
+ - num_epochs: 8
58
+ - label_smoothing_factor: 0.1
59
+
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore |
63
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|
64
+ | 3.5465 | 1.0 | 585 | 3.3215 | 30.09 | 13.23 | 26.07 | 36.31 | 73.97 |
65
+ | 3.3564 | 2.0 | 1170 | 3.2547 | 31.29 | 13.93 | 26.75 | 41.68 | 74.22 |
66
+ | 3.2185 | 3.0 | 1755 | 3.2421 | 31.78 | 14.1 | 27.07 | 41.64 | 74.4 |
67
+ | 3.1145 | 4.0 | 2340 | 3.2241 | 31.98 | 14.38 | 27.51 | 40.29 | 74.46 |
68
+ | 3.031 | 5.0 | 2925 | 3.2313 | 32.3 | 14.67 | 27.83 | 39.81 | 74.61 |
69
+ | 2.9627 | 6.0 | 3510 | 3.2348 | 32.39 | 14.65 | 27.76 | 40.02 | 74.6 |
70
+ | 2.9088 | 7.0 | 4095 | 3.2439 | 32.5 | 14.66 | 27.81 | 41.2 | 74.65 |
71
+ | 2.8649 | 8.0 | 4680 | 3.2497 | 32.52 | 14.71 | 27.88 | 41.45 | 74.65 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.19.4
77
+ - Pytorch 1.11.0+cu113
78
+ - Datasets 2.2.2
79
+ - Tokenizers 0.12.1