--- base_model: UBC-NLP/AraT5v2-base-1024 tags: - summarization - Arat5v2 - abstractive summarization - ar - xlsum - generated_from_trainer datasets: - xlsum model-index: - name: AraT5v2-base-1024-finetune-ar-xlsum results: [] --- # AraT5v2-base-1024-finetune-ar-xlsum This model is a fine-tuned version of [UBC-NLP/AraT5v2-base-1024](https://huggingface.co./UBC-NLP/AraT5v2-base-1024) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.7983 - Rouge-1: 33.4 - Rouge-2: 16.14 - Rouge-l: 29.31 - Gen Len: 18.63 - Bertscore: 74.57 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 6.1614 | 1.0 | 195 | 3.9898 | 28.51 | 12.02 | 24.64 | 18.87 | 72.64 | | 4.5342 | 2.0 | 390 | 3.9048 | 29.5 | 13.01 | 25.85 | 18.53 | 73.34 | | 4.2029 | 3.0 | 585 | 3.8162 | 31.64 | 14.33 | 27.54 | 18.57 | 73.88 | | 3.9689 | 4.0 | 781 | 3.7949 | 31.87 | 14.56 | 27.9 | 18.55 | 74.04 | | 3.8278 | 5.0 | 976 | 3.7702 | 31.85 | 14.58 | 27.74 | 18.74 | 73.96 | | 3.6921 | 6.0 | 1171 | 3.7775 | 32.27 | 14.95 | 28.16 | 18.78 | 74.23 | | 3.5632 | 7.0 | 1367 | 3.7751 | 32.54 | 15.04 | 28.4 | 18.72 | 74.36 | | 3.493 | 8.0 | 1562 | 3.7815 | 32.35 | 14.95 | 28.24 | 18.71 | 74.32 | | 3.4189 | 9.0 | 1757 | 3.7908 | 32.39 | 14.99 | 28.32 | 18.73 | 74.32 | | 3.3492 | 9.98 | 1950 | 3.7983 | 32.6 | 15.19 | 28.5 | 18.72 | 74.35 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3