--- language: - ar license: apache-2.0 base_model: openai/whisper-large-v3 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - ahishamm/QURANICWhisperDataset metrics: - wer model-index: - name: QURANIC Whisper Large V3 - 10000 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: QURANICWhisperDataset type: ahishamm/QURANICWhisperDataset args: 'config: ar, split: train' metrics: - name: Wer type: wer value: 99.93905329450803 --- # QURANIC Whisper Large V3 - 10000 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the QURANICWhisperDataset dataset. It achieves the following results on the evaluation set: - Loss: 0.2528 - Wer: 99.9391 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0907 | 2.0 | 1000 | 0.1326 | 107.4287 | | 0.0545 | 4.0 | 2000 | 0.1366 | 156.4231 | | 0.0211 | 6.0 | 3000 | 0.1515 | 245.3308 | | 0.0076 | 8.0 | 4000 | 0.1627 | 330.6630 | | 0.0031 | 10.0 | 5000 | 0.1788 | 170.7794 | | 0.0035 | 12.0 | 6000 | 0.1947 | 107.0630 | | 0.0006 | 14.0 | 7000 | 0.2107 | 98.0091 | | 0.0 | 16.0 | 8000 | 0.2208 | 97.8533 | | 0.0 | 18.0 | 9000 | 0.2426 | 99.7833 | | 0.0 | 20.0 | 10000 | 0.2528 | 99.9391 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.2.0 - Datasets 2.18.0 - Tokenizers 0.15.1