--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - cifar10 metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-cifar10 results: - task: name: Image Classification type: image-classification dataset: name: cifar10 type: cifar10 config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9612 --- # swin-tiny-patch4-window7-224-finetuned-cifar10 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the cifar10 dataset. It achieves the following results on the evaluation set: - Loss: 0.1218 - Accuracy: 0.9612 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6141 | 1.0 | 88 | 0.2073 | 0.931 | | 0.4767 | 2.0 | 176 | 0.1350 | 0.959 | | 0.4153 | 3.0 | 264 | 0.1218 | 0.9612 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3