File size: 1,944 Bytes
144a466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-ucfcrime-full2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-ucfcrime-full2

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co./MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5470
- Accuracy: 0.2143

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 800
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2039        | 0.125 | 100  | 2.4597          | 0.1644   |
| 1.8182        | 1.125 | 200  | 2.3359          | 0.2046   |
| 1.9124        | 2.125 | 300  | 2.6805          | 0.2078   |
| 1.7017        | 3.125 | 400  | 2.3331          | 0.2453   |
| 1.68          | 4.125 | 500  | 2.2637          | 0.2225   |
| 1.5457        | 5.125 | 600  | 2.4711          | 0.2284   |
| 1.4727        | 6.125 | 700  | 2.3691          | 0.2110   |
| 1.5393        | 7.125 | 800  | 2.4561          | 0.2025   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 3.0.0
- Tokenizers 0.19.1