File size: 5,006 Bytes
c0c0cd0 8626c62 c0c0cd0 8626c62 bbb3215 c0c0cd0 bbb3215 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
---
base_model:
- arcee-ai/Llama-3.1-SuperNova-Lite
- deepseek-ai/DeepSeek-R1-Distill-Llama-8B
- FuseAI/FuseChat-Llama-3.1-8B-Instruct
library_name: transformers
tags:
- mergekit
- merge
license: llama3.1
language:
- en
model-index:
- name: Llama3.1-SuperDeepFuse
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 77.62
name: averaged accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama3.1-SuperDeepFuse
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 29.22
name: normalized accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama3.1-SuperDeepFuse
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 17.75
name: exact match
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama3.1-SuperDeepFuse
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.24
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama3.1-SuperDeepFuse
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.13
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama3.1-SuperDeepFuse
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 30.83
name: accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama3.1-SuperDeepFuse
name: Open LLM Leaderboard
---
# Llama3.1-SuperDeepFuse
An 8B parameter language model that merges three high-performance distilled models to boost reasoning, instruction-following, and performance in mathematics and coding.
## Model Highlights
- **Size**: 8 billion parameters
- **Base**: [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Llama-3.1-8B-Instruct)
- **Merged Sources**:
- [arcee-ai/Llama-3.1-**Super**Nova-Lite](https://huggingface.co./arcee-ai/Llama-3.1-SuperNova-Lite)
- [deepseek-ai/**Deep**Seek-R1-Distill-Llama-8B](https://huggingface.co./deepseek-ai/DeepSeek-R1-Distill-Llama-8B)
- [FuseAI/**Fuse**Chat-Llama-3.1-8B-Instruct](https://huggingface.co./FuseAI/FuseChat-Llama-3.1-8B-Instruct)
- **Merge Method**: `model_stock`
## Key Capabilities
- Enhanced multi-task reasoning
- Improved mathematical and coding performance
- Multilingual support
## Performance Notes
- Maintains Llama 3.1 safety standards
- Suitable for consumer GPU deployment
- Balanced performance across diverse tasks
## Considerations
- Still being benchmarked
- Capabilities limited compared to larger model variants
- Can give misleading output like all other language models
- Outputs should be independently verified
## Licensing
Follows standard Llama 3.1 usage terms.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/agentlans__Llama3.1-SuperDeepFuse-details)!
Summarized results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/contents/viewer/default/train?q=agentlans%2FLlama3.1-SuperDeepFuse&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 27.30|
|IFEval (0-Shot) | 77.62|
|BBH (3-Shot) | 29.22|
|MATH Lvl 5 (4-Shot)| 17.75|
|GPQA (0-shot) | 3.24|
|MuSR (0-shot) | 5.13|
|MMLU-PRO (5-shot) | 30.83|
|