File size: 5,006 Bytes
c0c0cd0
8626c62
 
 
 
c0c0cd0
 
 
 
8626c62
 
 
bbb3215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0c0cd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbb3215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
base_model:
- arcee-ai/Llama-3.1-SuperNova-Lite
- deepseek-ai/DeepSeek-R1-Distill-Llama-8B
- FuseAI/FuseChat-Llama-3.1-8B-Instruct
library_name: transformers
tags:
- mergekit
- merge
license: llama3.1
language:
- en
model-index:
- name: Llama3.1-SuperDeepFuse
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: wis-k/instruction-following-eval
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 77.62
      name: averaged accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama3.1-SuperDeepFuse
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: SaylorTwift/bbh
      split: test
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 29.22
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama3.1-SuperDeepFuse
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: lighteval/MATH-Hard
      split: test
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 17.75
      name: exact match
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama3.1-SuperDeepFuse
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 3.24
      name: acc_norm
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama3.1-SuperDeepFuse
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 5.13
      name: acc_norm
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama3.1-SuperDeepFuse
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 30.83
      name: accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama3.1-SuperDeepFuse
      name: Open LLM Leaderboard
---
# Llama3.1-SuperDeepFuse

An 8B parameter language model that merges three high-performance distilled models to boost reasoning, instruction-following, and performance in mathematics and coding.

## Model Highlights

- **Size**: 8 billion parameters
- **Base**: [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Llama-3.1-8B-Instruct)
- **Merged Sources**:
  - [arcee-ai/Llama-3.1-**Super**Nova-Lite](https://huggingface.co./arcee-ai/Llama-3.1-SuperNova-Lite)
  - [deepseek-ai/**Deep**Seek-R1-Distill-Llama-8B](https://huggingface.co./deepseek-ai/DeepSeek-R1-Distill-Llama-8B)
  - [FuseAI/**Fuse**Chat-Llama-3.1-8B-Instruct](https://huggingface.co./FuseAI/FuseChat-Llama-3.1-8B-Instruct)
- **Merge Method**: `model_stock`

## Key Capabilities

- Enhanced multi-task reasoning
- Improved mathematical and coding performance
- Multilingual support

## Performance Notes

- Maintains Llama 3.1 safety standards
- Suitable for consumer GPU deployment
- Balanced performance across diverse tasks

## Considerations

- Still being benchmarked
- Capabilities limited compared to larger model variants
- Can give misleading output like all other language models
- Outputs should be independently verified

## Licensing

Follows standard Llama 3.1 usage terms.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/agentlans__Llama3.1-SuperDeepFuse-details)!
Summarized results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/contents/viewer/default/train?q=agentlans%2FLlama3.1-SuperDeepFuse&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |    27.30|
|IFEval (0-Shot)    |    77.62|
|BBH (3-Shot)       |    29.22|
|MATH Lvl 5 (4-Shot)|    17.75|
|GPQA (0-shot)      |     3.24|
|MuSR (0-shot)      |     5.13|
|MMLU-PRO (5-shot)  |    30.83|