--- base_model: TokenBender/evolvedSeeker_1_3 inference: false model-index: - name: evolvedSeeker-1_3_v_0_0_1 results: [] model_creator: TokenBender model_name: evolvedSeeker_1_3 pipeline_tag: text-generation quantized_by: afrideva tags: - generated_from_trainer - gguf - ggml - quantized - q2_k - q3_k_m - q4_k_m - q5_k_m - q6_k - q8_0 --- # TokenBender/evolvedSeeker_1_3-GGUF Quantized GGUF model files for [evolvedSeeker_1_3](https://huggingface.co./TokenBender/evolvedSeeker_1_3) from [TokenBender](https://huggingface.co./TokenBender) | Name | Quant method | Size | | ---- | ---- | ---- | | [evolvedseeker_1_3.fp16.gguf](https://huggingface.co./afrideva/evolvedSeeker_1_3-GGUF/resolve/main/evolvedseeker_1_3.fp16.gguf) | fp16 | 2.69 GB | | [evolvedseeker_1_3.q2_k.gguf](https://huggingface.co./afrideva/evolvedSeeker_1_3-GGUF/resolve/main/evolvedseeker_1_3.q2_k.gguf) | q2_k | 631.71 MB | | [evolvedseeker_1_3.q3_k_m.gguf](https://huggingface.co./afrideva/evolvedSeeker_1_3-GGUF/resolve/main/evolvedseeker_1_3.q3_k_m.gguf) | q3_k_m | 704.97 MB | | [evolvedseeker_1_3.q4_k_m.gguf](https://huggingface.co./afrideva/evolvedSeeker_1_3-GGUF/resolve/main/evolvedseeker_1_3.q4_k_m.gguf) | q4_k_m | 873.58 MB | | [evolvedseeker_1_3.q5_k_m.gguf](https://huggingface.co./afrideva/evolvedSeeker_1_3-GGUF/resolve/main/evolvedseeker_1_3.q5_k_m.gguf) | q5_k_m | 1.00 GB | | [evolvedseeker_1_3.q6_k.gguf](https://huggingface.co./afrideva/evolvedSeeker_1_3-GGUF/resolve/main/evolvedseeker_1_3.q6_k.gguf) | q6_k | 1.17 GB | | [evolvedseeker_1_3.q8_0.gguf](https://huggingface.co./afrideva/evolvedSeeker_1_3-GGUF/resolve/main/evolvedseeker_1_3.q8_0.gguf) | q8_0 | 1.43 GB | ## Original Model Card: # evolvedSeeker-1_3 EvolvedSeeker v0.0.1 (First phase) This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co./deepseek-ai/deepseek-coder-1.3b-base) on 50k instructions for 3 epochs. I have mostly curated instructions from evolInstruct datasets and some portions of glaive coder. Around 3k answers were modified via self-instruct. Collaborate or Consult me - [Twitter](https://twitter.com/4evaBehindSOTA), [Discord](https://discord.gg/ftEM63pzs2) *Recommended format is ChatML, Alpaca will work but take care of EOT token* #### Chat Model Inference ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("TokenBender/evolvedSeeker_1_3", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("TokenBender/evolvedSeeker_1_3", trust_remote_code=True).cuda() messages=[ { 'role': 'user', 'content': "write a program to reverse letters in each word in a sentence without reversing order of words in the sentence."} ] inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device) # 32021 is the id of <|EOT|> token outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=32021) print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)) ``` ## Model description First model of Project PIC (Partner-in-Crime) in 1.3B range. Almost all the work is pending right now for this model hence v0.0.1 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6398bf222da24ee95b51c8d8/Fl-pRCsC_lvnuoP734hsJ.png) ## Intended uses & limitations Superfast Copilot Run near lossless quantized in 1G RAM. Useful for code dataset curation and evaluation. Limitations - This is a smol model, so smol brain, may have crammed a few things. Reasoning tests may fail beyond a certain point. ## Training procedure SFT ### Training results Humaneval Score - 68.29% ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6398bf222da24ee95b51c8d8/AFp6PxZ9ZP_xti4VWjen3.png) ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1 - Datasets 2.15.0 - Tokenizers 0.15.0