--- base_model: nicholasKluge/TeenyTinyLlama-460m-Chat co2_eq_emissions: emissions: 2.53 geographical_location: United States of America hardware_used: NVIDIA A100-SXM4-40GB source: CodeCarbon training_type: fine-tuning datasets: - nicholasKluge/instruct-aira-dataset-v2 inference: true language: - pt library_name: transformers license: apache-2.0 metrics: - accuracy model-index: - name: TeenyTinyLlama-460m-Chat results: - dataset: args: num_few_shot: 3 name: ENEM Challenge (No Images) split: train type: eduagarcia/enem_challenge metrics: - name: accuracy type: acc value: 20.29 source: name: Open Portuguese LLM Leaderboard url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m-Chat task: name: Text Generation type: text-generation - dataset: args: num_few_shot: 3 name: BLUEX (No Images) split: train type: eduagarcia-temp/BLUEX_without_images metrics: - name: accuracy type: acc value: 25.45 source: name: Open Portuguese LLM Leaderboard url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m-Chat task: name: Text Generation type: text-generation - dataset: args: num_few_shot: 3 name: OAB Exams split: train type: eduagarcia/oab_exams metrics: - name: accuracy type: acc value: 26.74 source: name: Open Portuguese LLM Leaderboard url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m-Chat task: name: Text Generation type: text-generation - dataset: args: num_few_shot: 15 name: Assin2 RTE split: test type: assin2 metrics: - name: f1-macro type: f1_macro value: 43.77 source: name: Open Portuguese LLM Leaderboard url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m-Chat task: name: Text Generation type: text-generation - dataset: args: num_few_shot: 15 name: Assin2 STS split: test type: eduagarcia/portuguese_benchmark metrics: - name: pearson type: pearson value: 4.52 source: name: Open Portuguese LLM Leaderboard url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m-Chat task: name: Text Generation type: text-generation - dataset: args: num_few_shot: 15 name: FaQuAD NLI split: test type: ruanchaves/faquad-nli metrics: - name: f1-macro type: f1_macro value: 34.0 source: name: Open Portuguese LLM Leaderboard url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m-Chat task: name: Text Generation type: text-generation - dataset: args: num_few_shot: 25 name: HateBR Binary split: test type: ruanchaves/hatebr metrics: - name: f1-macro type: f1_macro value: 33.49 source: name: Open Portuguese LLM Leaderboard url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m-Chat task: name: Text Generation type: text-generation - dataset: args: num_few_shot: 25 name: PT Hate Speech Binary split: test type: hate_speech_portuguese metrics: - name: f1-macro type: f1_macro value: 22.99 source: name: Open Portuguese LLM Leaderboard url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m-Chat task: name: Text Generation type: text-generation - dataset: args: num_few_shot: 25 name: tweetSentBR split: test type: eduagarcia-temp/tweetsentbr metrics: - name: f1-macro type: f1_macro value: 18.13 source: name: Open Portuguese LLM Leaderboard url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m-Chat task: name: Text Generation type: text-generation model_creator: nicholasKluge model_name: TeenyTinyLlama-460m-Chat pipeline_tag: text-generation quantized_by: afrideva tags: - alignment - instruction tuned - text generation - conversation - assistant - gguf - ggml - quantized widget: - example_title: Exemplo text: Cite algumas bandas de rock famosas da década de 1960. - example_title: Exemplo text: Quantos planetas existem no sistema solar? - example_title: Exemplo text: Qual é o futuro do ser humano? - example_title: Exemplo text: Qual o sentido da vida? - example_title: Exemplo text: Como imprimir hello world em python? - example_title: Exemplo text: Invente uma história sobre um encanador com poderes mágicos. --- # TeenyTinyLlama-460m-Chat-GGUF Quantized GGUF model files for [TeenyTinyLlama-460m-Chat](https://huggingface.co./nicholasKluge/TeenyTinyLlama-460m-Chat) from [nicholasKluge](https://huggingface.co./nicholasKluge) ## Original Model Card: # TeenyTinyLlama-460m-Chat TeenyTinyLlama is a pair of small foundational models trained in Brazilian Portuguese. This repository contains a version of [TeenyTinyLlama-460m](https://huggingface.co./nicholasKluge/TeenyTinyLlama-460m) (`TeenyTinyLlama-460m-Chat`) fine-tuned on the [Instruct-Aira Dataset version 2.0](https://huggingface.co./datasets/nicholasKluge/instruct-aira-dataset-v2). ## Details - **Number of Epochs:** 3 - **Batch size:** 4 - **Optimizer:** `torch.optim.AdamW` (warmup_steps = 1e3, learning_rate = 1e-5, epsilon = 1e-8) - **GPU:** 1 NVIDIA A100-SXM4-40GB - **Carbon emissions** stats are logged in this [file](emissions.csv). This repository has the [source code](https://github.com/Nkluge-correa/TeenyTinyLlama) used to train this model. ## Intended Uses The primary intended use of TeenyTinyLlama is to research the challenges related to developing language models for low-resource languages. Checkpoints saved during training are intended to provide a controlled setting for performing scientific experiments. You may also further fine-tune and adapt TeenyTinyLlama for deployment, as long as your use is following the Apache 2.0 license. If you decide to use pre-trained TeenyTinyLlama as a basis for your fine-tuned model, please conduct your own risk and bias assessment. ## Out-of-scope Use TeenyTinyLlama is not intended for deployment. It is not a product and should not be used for human-facing interactions. TeenyTinyLlama models are Brazilian Portuguese language only and are not suitable for translation or generating text in other languages. TeenyTinyLlama has not been fine-tuned for downstream contexts in which language models are commonly deployed. ## Usage The following special tokens are used to mark the user side of the interaction and the model's response: ``What is a language model?``A language model is a probability distribution over a vocabulary.`` ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/TeenyTinyLlama-460m-Chat') model = AutoModelForCausalLM.from_pretrained('nicholasKluge/TeenyTinyLlama-460m-Chat') model.eval() model.to(device) question = input("Entre seu prompt aqui: ") inputs = tokenizer("" + question + "", return_tensors="pt").to(device) responses = model.generate(**inputs, num_return_sequences=2) print(f"Pergunta: 👤 {question}\n") for i, response in enumerate(responses): print(f'Resposta {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}') ``` The model will output something like: ```markdown >>>Question: 👤 Qual a capital do Brasil? >>>Response 1: 🤖 A capital do Brasil é Brasília. >>>Response 2: 🤖 A capital do Brasil é Brasília. ``` The chat template for this model is: ```bash {{bos_token}} {% for message in messages %} {% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %} {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }} {% endif %} {% if message['role'] == 'user' %} {{ '' + message['content'].strip() + ''}} {% elif message['role'] == 'assistant' %} {{ message['content'].strip() + eos_token}} {% else %} {{ raise_exception('Only user and assistant roles are supported!') }} {% endif %} {% endfor %} ``` ## Limitations Like almost all other language models trained on large text datasets scraped from the web, the TTL pair exhibited behavior that does not make them an out-of-the-box solution to many real-world applications, especially those requiring factual, reliable, nontoxic text generation. Our models are all subject to the following: - **Hallucinations:** This model can produce content that can be mistaken for truth but is, in fact, misleading or entirely false, i.e., hallucination. - **Biases and Toxicity:** This model inherits the social and historical stereotypes from the data used to train it. Given these biases, the model can produce toxic content, i.e., harmful, offensive, or detrimental to individuals, groups, or communities. - **Unreliable Code:** The model may produce incorrect code snippets and statements. These code generations should not be treated as suggestions or accurate solutions. - **Language Limitations:** The model is primarily designed to understand standard Brazilian Portuguese. Other languages might challenge its comprehension, leading to potential misinterpretations or errors in response. - **Repetition and Verbosity:** The model may get stuck on repetition loops (especially if the repetition penalty during generations is set to a meager value) or produce verbose responses unrelated to the prompt it was given. Hence, even though our models are released with a permissive license, we urge users to perform their risk analysis on these models if intending to use them for real-world applications and also have humans moderating the outputs of these models in applications where they will interact with an audience, guaranteeing users are always aware they are interacting with a language model. ## Evaluations During our training runs, both models showed consistent convergence. At no point did our evaluation curves show signs of overfitting or saturation. In the case of our 460m parameter model, we intentionally trained past the optimal point by approximately 75,000 steps to assess if there were any signs of saturation, but our evaluations consistently gave better results. We hypothesize that our models are under-trained but can improve if further trained to pass the Chinchilla optimal range. | Processed Tokens | Perplexity | Energy Consumption (kWh) | Emissions (KgCO2eq) | |------------------|------------|---------------------------|----------------------| | 8.1M | 20.49 | 9.40 | 3.34 | | 1.6B | 16.90 | 18.82 | 6.70 | | 2.4B | 15.43 | 28.59 | 10.16 | | 3.2B | 14.64 | 38.20 | 13.57 | | 4.0B | 14.08 | 48.04 | 17.07 | | 4.9B | 13.61 | 57.74 | 20.52 | | 5.7B | 13.25 | 67.32 | 23.92 | | 6.5B | 12.87 | 76.84 | 27.30 | | 7.3B | 12.57 | 86.40 | 30.70 | | 8.1B | 12.27 | 96.19 | 34.18 | | 9.0B | 11.96 | 106.06 | 37.70 | | 9.8B | 11.77 | 115.69 | 41.31 | ## Benchmarks Evaluations on benchmarks were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)). [Laiviet](https://github.com/laiviet/lm-evaluation-harness) translated the tasks from the LM-Evaluation-Harness we used. The results of models marked with an "*" were extracted from the [Open LLM Leaderboard](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard). | | **ARC** | **HellaSwag** | **MMLU** | **TruthfulQA** | **Average** | |------------------|-----------|---------------|-----------|----------------|-------------| | Pythia-410m | 24.83* | 41.29* | 25.99* | 40.95* | 33.26 | | **TTL-460m** | 29.40 | 33.00 | 28.55 | 41.10 | 33.01 | | Bloom-560m | 24.74* | 37.15* | 24.22* | 42.44* | 32.13 | | Xglm-564M | 25.56 | 34.64* | 25.18* | 42.53 | 31.97 | | OPT-350m | 23.55* | 36.73* | 26.02* | 40.83* | 31.78 | | **TTL-160m** | 26.15 | 29.29 | 28.11 | 41.12 | 31.16 | | Pythia-160m | 24.06* | 31.39* | 24.86* | 44.34* | 31.16 | | OPT-125m | 22.87* | 31.47* | 26.02* | 42.87* | 30.80 | | GPorTuguese-2 | 22.48 | 29.62 | 27.36 | 41.44 | 30.22 | | Gpt2-small | 21.48* | 31.60* | 25.79* | 40.65* | 29.97 | | Multilingual GPT | 23.81 | 26.37* | 25.17* | 39.62 | 28.73 | Evaluations on Brazilian Portuguese benchmarks were performed using a [Portuguese implementation of the EleutherAI LM Evaluation Harness](https://github.com/eduagarcia/lm-evaluation-harness-pt) (created by [Eduardo Garcia](https://github.com/eduagarcia/lm-evaluation-harness-pt)). | | **ASSIN2 RTE** | **ASSIN2 STS** | **BLUEX** | **ENEM** | **FAQUAD NLI** | **HateBR** | **OAB Exams** | **Average** | |----------------|----------------|----------------|-----------|----------|----------------|------------|---------------|-------------| | Qwen-1.8B | 64.83 | 19.53 | 26.15 | 30.23 | 43.97 | 33.33 | 27.20 | 35.03 | | TinyLlama-1.1B | 58.93 | 13.57 | 22.81 | 22.25 | 43.97 | 36.92 | 23.64 | 31.72 | | **TTL-460m** | 53.93 | 12.66 | 22.81 | 19.87 | 49.01 | 33.59 | 27.06 | 31.27 | | XGLM-564m | 49.61 | 22.91 | 19.61 | 19.38 | 43.97 | 33.99 | 23.42 | 30.41 | | Bloom-1b7 | 53.60 | 4.81 | 21.42 | 18.96 | 43.97 | 34.89 | 23.05 | 28.67 | | **TTL-160m** | 53.36 | 2.58 | 21.84 | 18.75 | 43.97 | 36.88 | 22.60 | 28.56 | | OPT-125m | 39.77 | 2.00 | 21.84 | 17.42 | 43.97 | 47.04 | 22.78 | 27.83 | | Pythia-160 | 33.33 | 12.81 | 16.13 | 16.66 | 50.36 | 41.09 | 22.82 | 27.60 | | OLMo-1b | 34.12 | 9.28 | 18.92 | 20.29 | 43.97 | 41.33 | 22.96 | 27.26 | | Bloom-560m | 33.33 | 8.48 | 18.92 | 19.03 | 43.97 | 37.07 | 23.05 | 26.26 | | Pythia-410m | 33.33 | 4.80 | 19.47 | 19.45 | 43.97 | 33.33 | 23.01 | 25.33 | | OPT-350m | 33.33 | 3.65 | 20.72 | 17.35 | 44.71 | 33.33 | 23.01 | 25.15 | | GPT-2 small | 33.26 | 0.00 | 10.43 | 11.20 | 43.52 | 33.68 | 13.12 | 20.74 | | GPorTuguese | 33.33 | 3.85 | 14.74 | 3.01 | 28.81 | 33.33 | 21.23 | 19.75 | | Samba-1.1B | 33.33 | 1.30 | 8.07 | 10.22 | 17.72 | 35.79 | 15.03 | 17.35 | ## Fine-Tuning Comparisons To further evaluate the downstream capabilities of our models, we decided to employ a basic fine-tuning procedure for our TTL pair on a subset of tasks from the Poeta benchmark. We apply the same procedure for comparison purposes on both [BERTimbau](https://huggingface.co./neuralmind/bert-base-portuguese-cased) models, given that they are also LLM trained from scratch in Brazilian Portuguese and have a similar size range to our models. We used these comparisons to assess if our pre-training runs produced LLM capable of producing good results ("good" here means "close to BERTimbau") when utilized for downstream applications. | Models | IMDB | FaQuAD-NLI | HateBr | Assin2 | AgNews | Average | |-----------------|-----------|------------|-----------|-----------|-----------|---------| | BERTimbau-large | **93.58** | 92.26 | 91.57 | **88.97** | 94.11 | 92.10 | | BERTimbau-small | 92.22 | **93.07** | 91.28 | 87.45 | 94.19 | 91.64 | | **TTL-460m** | 91.64 | 91.18 | **92.28** | 86.43 | **94.42** | 91.19 | | **TTL-160m** | 91.14 | 90.00 | 90.71 | 85.78 | 94.05 | 90.34 | All the shown results are the higher accuracy scores achieved on the respective task test sets after fine-tuning the models on the training sets. All fine-tuning runs used the same hyperparameters, and the code implementation can be found in the [model cards](https://huggingface.co./nicholasKluge/TeenyTinyLlama-460m-HateBR) of our fine-tuned models. ## Cite as 🤗 ```latex @misc{correa24ttllama, title = {TeenyTinyLlama: open-source tiny language models trained in Brazilian Portuguese}, author = {Corr{\^e}a, Nicholas Kluge and Falk, Sophia and Fatimah, Shiza and Sen, Aniket and De Oliveira, Nythamar}, journal={arXiv preprint arXiv:2401.16640}, year={2024} } ``` ## Funding This repository was built as part of the RAIES ([Rede de Inteligência Artificial Ética e Segura](https://www.raies.org/)) initiative, a project supported by FAPERGS - ([Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul](https://fapergs.rs.gov.br/inicial)), Brazil. ## License TeenyTinyLlama-460m-Chat is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details.