adriansanz commited on
Commit
08ad1f7
1 Parent(s): b646232

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,804 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:4173
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: Les respectives convocatòries determinaran les parades disponibles
35
+ així com les seves característiques i descripció.
36
+ sentences:
37
+ - Quin és l'objectiu secundari dels ajuts per a la creació de noves empreses?
38
+ - Qui és responsable de la resolució de la situació en un domini particular?
39
+ - Quin és el paper de les convocatòries?
40
+ - source_sentence: Cal revisar la informació i els terminis de la convocatòria específica
41
+ de cada procés que trobareu a la Seu electrònica de l'Ajuntament de Sitges.
42
+ sentences:
43
+ - Quin és el paper de la Seu electrònica de l'Ajuntament de Sitges en un procés
44
+ de selecció de personal?
45
+ - Quin és l'objectiu principal de sol·licitar el certificat d'antiguitat i legalitat
46
+ d'una finca?
47
+ - Quin és el propòsit dels ajuts a la contractació laboral en relació amb l'ocupació?
48
+ - source_sentence: Per a poder rebre les subvencions pel suport educatiu a les escoles
49
+ públiques de Sitges, els beneficiaris han de presentar un projecte d'acció que
50
+ compleixi els requisits establerts en la convocatòria corresponent.
51
+ sentences:
52
+ - Quin és el propòsit de la sol·licitud d'ajuts?
53
+ - Quin és el paper de l'Ajuntament de Sitges en la Fira de la Vila del Llibre de
54
+ Sitges?
55
+ - Quin és el requisit per a poder rebre les subvencions pel suport educatiu a les
56
+ escoles públiques de Sitges?
57
+ - source_sentence: Posteriorment a l’obtenció de l’informe favorable, caldrà realitzar
58
+ l’acte de comprovació en matèria d’incendis i procedir a efectuar la comunicació
59
+ prèvia corresponent.
60
+ sentences:
61
+ - Quin és el paper de la comunicació prèvia en la prevenció d'incendis?
62
+ - Quins són els requisits per a presentar una sol·licitud de subvenció?
63
+ - Quins animals es consideren animals de companyia?
64
+ - source_sentence: El termini per a la presentació de les sol·licituds de modificació
65
+ del projecte o activitat subvencionat és de 15 dies naturals abans de la finalització
66
+ del projecte o activitat.
67
+ sentences:
68
+ - Quin és el termini per a la presentació de les sol·licituds de modificació del
69
+ projecte o activitat subvencionat?
70
+ - Quins són els tres tipus de llicència d'obra?
71
+ - Quin és el registre on es troben les dades d'inscripció?
72
+ model-index:
73
+ - name: BGE base Financial Matryoshka
74
+ results:
75
+ - task:
76
+ type: information-retrieval
77
+ name: Information Retrieval
78
+ dataset:
79
+ name: dim 768
80
+ type: dim_768
81
+ metrics:
82
+ - type: cosine_accuracy@1
83
+ value: 0.0625
84
+ name: Cosine Accuracy@1
85
+ - type: cosine_accuracy@3
86
+ value: 0.11637931034482758
87
+ name: Cosine Accuracy@3
88
+ - type: cosine_accuracy@5
89
+ value: 0.1810344827586207
90
+ name: Cosine Accuracy@5
91
+ - type: cosine_accuracy@10
92
+ value: 0.35560344827586204
93
+ name: Cosine Accuracy@10
94
+ - type: cosine_precision@1
95
+ value: 0.0625
96
+ name: Cosine Precision@1
97
+ - type: cosine_precision@3
98
+ value: 0.03879310344827586
99
+ name: Cosine Precision@3
100
+ - type: cosine_precision@5
101
+ value: 0.036206896551724134
102
+ name: Cosine Precision@5
103
+ - type: cosine_precision@10
104
+ value: 0.03556034482758621
105
+ name: Cosine Precision@10
106
+ - type: cosine_recall@1
107
+ value: 0.0625
108
+ name: Cosine Recall@1
109
+ - type: cosine_recall@3
110
+ value: 0.11637931034482758
111
+ name: Cosine Recall@3
112
+ - type: cosine_recall@5
113
+ value: 0.1810344827586207
114
+ name: Cosine Recall@5
115
+ - type: cosine_recall@10
116
+ value: 0.35560344827586204
117
+ name: Cosine Recall@10
118
+ - type: cosine_ndcg@10
119
+ value: 0.17546345429803745
120
+ name: Cosine Ndcg@10
121
+ - type: cosine_mrr@10
122
+ value: 0.12245227832512329
123
+ name: Cosine Mrr@10
124
+ - type: cosine_map@100
125
+ value: 0.1487513151351338
126
+ name: Cosine Map@100
127
+ - task:
128
+ type: information-retrieval
129
+ name: Information Retrieval
130
+ dataset:
131
+ name: dim 512
132
+ type: dim_512
133
+ metrics:
134
+ - type: cosine_accuracy@1
135
+ value: 0.0625
136
+ name: Cosine Accuracy@1
137
+ - type: cosine_accuracy@3
138
+ value: 0.10991379310344827
139
+ name: Cosine Accuracy@3
140
+ - type: cosine_accuracy@5
141
+ value: 0.17025862068965517
142
+ name: Cosine Accuracy@5
143
+ - type: cosine_accuracy@10
144
+ value: 0.35560344827586204
145
+ name: Cosine Accuracy@10
146
+ - type: cosine_precision@1
147
+ value: 0.0625
148
+ name: Cosine Precision@1
149
+ - type: cosine_precision@3
150
+ value: 0.036637931034482756
151
+ name: Cosine Precision@3
152
+ - type: cosine_precision@5
153
+ value: 0.03405172413793103
154
+ name: Cosine Precision@5
155
+ - type: cosine_precision@10
156
+ value: 0.03556034482758621
157
+ name: Cosine Precision@10
158
+ - type: cosine_recall@1
159
+ value: 0.0625
160
+ name: Cosine Recall@1
161
+ - type: cosine_recall@3
162
+ value: 0.10991379310344827
163
+ name: Cosine Recall@3
164
+ - type: cosine_recall@5
165
+ value: 0.17025862068965517
166
+ name: Cosine Recall@5
167
+ - type: cosine_recall@10
168
+ value: 0.35560344827586204
169
+ name: Cosine Recall@10
170
+ - type: cosine_ndcg@10
171
+ value: 0.17281692680622274
172
+ name: Cosine Ndcg@10
173
+ - type: cosine_mrr@10
174
+ value: 0.11932898877942
175
+ name: Cosine Mrr@10
176
+ - type: cosine_map@100
177
+ value: 0.145505253139907
178
+ name: Cosine Map@100
179
+ - task:
180
+ type: information-retrieval
181
+ name: Information Retrieval
182
+ dataset:
183
+ name: dim 256
184
+ type: dim_256
185
+ metrics:
186
+ - type: cosine_accuracy@1
187
+ value: 0.05603448275862069
188
+ name: Cosine Accuracy@1
189
+ - type: cosine_accuracy@3
190
+ value: 0.12284482758620689
191
+ name: Cosine Accuracy@3
192
+ - type: cosine_accuracy@5
193
+ value: 0.1724137931034483
194
+ name: Cosine Accuracy@5
195
+ - type: cosine_accuracy@10
196
+ value: 0.34051724137931033
197
+ name: Cosine Accuracy@10
198
+ - type: cosine_precision@1
199
+ value: 0.05603448275862069
200
+ name: Cosine Precision@1
201
+ - type: cosine_precision@3
202
+ value: 0.040948275862068964
203
+ name: Cosine Precision@3
204
+ - type: cosine_precision@5
205
+ value: 0.034482758620689655
206
+ name: Cosine Precision@5
207
+ - type: cosine_precision@10
208
+ value: 0.03405172413793103
209
+ name: Cosine Precision@10
210
+ - type: cosine_recall@1
211
+ value: 0.05603448275862069
212
+ name: Cosine Recall@1
213
+ - type: cosine_recall@3
214
+ value: 0.12284482758620689
215
+ name: Cosine Recall@3
216
+ - type: cosine_recall@5
217
+ value: 0.1724137931034483
218
+ name: Cosine Recall@5
219
+ - type: cosine_recall@10
220
+ value: 0.34051724137931033
221
+ name: Cosine Recall@10
222
+ - type: cosine_ndcg@10
223
+ value: 0.16797293983212122
224
+ name: Cosine Ndcg@10
225
+ - type: cosine_mrr@10
226
+ value: 0.11677955665024647
227
+ name: Cosine Mrr@10
228
+ - type: cosine_map@100
229
+ value: 0.14311504496457605
230
+ name: Cosine Map@100
231
+ - task:
232
+ type: information-retrieval
233
+ name: Information Retrieval
234
+ dataset:
235
+ name: dim 128
236
+ type: dim_128
237
+ metrics:
238
+ - type: cosine_accuracy@1
239
+ value: 0.05172413793103448
240
+ name: Cosine Accuracy@1
241
+ - type: cosine_accuracy@3
242
+ value: 0.11422413793103449
243
+ name: Cosine Accuracy@3
244
+ - type: cosine_accuracy@5
245
+ value: 0.18318965517241378
246
+ name: Cosine Accuracy@5
247
+ - type: cosine_accuracy@10
248
+ value: 0.31896551724137934
249
+ name: Cosine Accuracy@10
250
+ - type: cosine_precision@1
251
+ value: 0.05172413793103448
252
+ name: Cosine Precision@1
253
+ - type: cosine_precision@3
254
+ value: 0.038074712643678156
255
+ name: Cosine Precision@3
256
+ - type: cosine_precision@5
257
+ value: 0.036637931034482756
258
+ name: Cosine Precision@5
259
+ - type: cosine_precision@10
260
+ value: 0.03189655172413793
261
+ name: Cosine Precision@10
262
+ - type: cosine_recall@1
263
+ value: 0.05172413793103448
264
+ name: Cosine Recall@1
265
+ - type: cosine_recall@3
266
+ value: 0.11422413793103449
267
+ name: Cosine Recall@3
268
+ - type: cosine_recall@5
269
+ value: 0.18318965517241378
270
+ name: Cosine Recall@5
271
+ - type: cosine_recall@10
272
+ value: 0.31896551724137934
273
+ name: Cosine Recall@10
274
+ - type: cosine_ndcg@10
275
+ value: 0.15889833336121337
276
+ name: Cosine Ndcg@10
277
+ - type: cosine_mrr@10
278
+ value: 0.11119406814449927
279
+ name: Cosine Mrr@10
280
+ - type: cosine_map@100
281
+ value: 0.1376499182467716
282
+ name: Cosine Map@100
283
+ - task:
284
+ type: information-retrieval
285
+ name: Information Retrieval
286
+ dataset:
287
+ name: dim 64
288
+ type: dim_64
289
+ metrics:
290
+ - type: cosine_accuracy@1
291
+ value: 0.04525862068965517
292
+ name: Cosine Accuracy@1
293
+ - type: cosine_accuracy@3
294
+ value: 0.10560344827586207
295
+ name: Cosine Accuracy@3
296
+ - type: cosine_accuracy@5
297
+ value: 0.16594827586206898
298
+ name: Cosine Accuracy@5
299
+ - type: cosine_accuracy@10
300
+ value: 0.30603448275862066
301
+ name: Cosine Accuracy@10
302
+ - type: cosine_precision@1
303
+ value: 0.04525862068965517
304
+ name: Cosine Precision@1
305
+ - type: cosine_precision@3
306
+ value: 0.035201149425287355
307
+ name: Cosine Precision@3
308
+ - type: cosine_precision@5
309
+ value: 0.0331896551724138
310
+ name: Cosine Precision@5
311
+ - type: cosine_precision@10
312
+ value: 0.030603448275862068
313
+ name: Cosine Precision@10
314
+ - type: cosine_recall@1
315
+ value: 0.04525862068965517
316
+ name: Cosine Recall@1
317
+ - type: cosine_recall@3
318
+ value: 0.10560344827586207
319
+ name: Cosine Recall@3
320
+ - type: cosine_recall@5
321
+ value: 0.16594827586206898
322
+ name: Cosine Recall@5
323
+ - type: cosine_recall@10
324
+ value: 0.30603448275862066
325
+ name: Cosine Recall@10
326
+ - type: cosine_ndcg@10
327
+ value: 0.14903489989981042
328
+ name: Cosine Ndcg@10
329
+ - type: cosine_mrr@10
330
+ value: 0.10241516146688567
331
+ name: Cosine Mrr@10
332
+ - type: cosine_map@100
333
+ value: 0.12594670041141745
334
+ name: Cosine Map@100
335
+ ---
336
+
337
+ # BGE base Financial Matryoshka
338
+
339
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
340
+
341
+ ## Model Details
342
+
343
+ ### Model Description
344
+ - **Model Type:** Sentence Transformer
345
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
346
+ - **Maximum Sequence Length:** 512 tokens
347
+ - **Output Dimensionality:** 768 tokens
348
+ - **Similarity Function:** Cosine Similarity
349
+ <!-- - **Training Dataset:** Unknown -->
350
+ - **Language:** en
351
+ - **License:** apache-2.0
352
+
353
+ ### Model Sources
354
+
355
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
356
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
357
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
358
+
359
+ ### Full Model Architecture
360
+
361
+ ```
362
+ SentenceTransformer(
363
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
364
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
365
+ (2): Normalize()
366
+ )
367
+ ```
368
+
369
+ ## Usage
370
+
371
+ ### Direct Usage (Sentence Transformers)
372
+
373
+ First install the Sentence Transformers library:
374
+
375
+ ```bash
376
+ pip install -U sentence-transformers
377
+ ```
378
+
379
+ Then you can load this model and run inference.
380
+ ```python
381
+ from sentence_transformers import SentenceTransformer
382
+
383
+ # Download from the 🤗 Hub
384
+ model = SentenceTransformer("adriansanz/sitges2608")
385
+ # Run inference
386
+ sentences = [
387
+ 'El termini per a la presentació de les sol·licituds de modificació del projecte o activitat subvencionat és de 15 dies naturals abans de la finalització del projecte o activitat.',
388
+ 'Quin és el termini per a la presentació de les sol·licituds de modificació del projecte o activitat subvencionat?',
389
+ "Quin és el registre on es troben les dades d'inscripció?",
390
+ ]
391
+ embeddings = model.encode(sentences)
392
+ print(embeddings.shape)
393
+ # [3, 768]
394
+
395
+ # Get the similarity scores for the embeddings
396
+ similarities = model.similarity(embeddings, embeddings)
397
+ print(similarities.shape)
398
+ # [3, 3]
399
+ ```
400
+
401
+ <!--
402
+ ### Direct Usage (Transformers)
403
+
404
+ <details><summary>Click to see the direct usage in Transformers</summary>
405
+
406
+ </details>
407
+ -->
408
+
409
+ <!--
410
+ ### Downstream Usage (Sentence Transformers)
411
+
412
+ You can finetune this model on your own dataset.
413
+
414
+ <details><summary>Click to expand</summary>
415
+
416
+ </details>
417
+ -->
418
+
419
+ <!--
420
+ ### Out-of-Scope Use
421
+
422
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
423
+ -->
424
+
425
+ ## Evaluation
426
+
427
+ ### Metrics
428
+
429
+ #### Information Retrieval
430
+ * Dataset: `dim_768`
431
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
432
+
433
+ | Metric | Value |
434
+ |:--------------------|:-----------|
435
+ | cosine_accuracy@1 | 0.0625 |
436
+ | cosine_accuracy@3 | 0.1164 |
437
+ | cosine_accuracy@5 | 0.181 |
438
+ | cosine_accuracy@10 | 0.3556 |
439
+ | cosine_precision@1 | 0.0625 |
440
+ | cosine_precision@3 | 0.0388 |
441
+ | cosine_precision@5 | 0.0362 |
442
+ | cosine_precision@10 | 0.0356 |
443
+ | cosine_recall@1 | 0.0625 |
444
+ | cosine_recall@3 | 0.1164 |
445
+ | cosine_recall@5 | 0.181 |
446
+ | cosine_recall@10 | 0.3556 |
447
+ | cosine_ndcg@10 | 0.1755 |
448
+ | cosine_mrr@10 | 0.1225 |
449
+ | **cosine_map@100** | **0.1488** |
450
+
451
+ #### Information Retrieval
452
+ * Dataset: `dim_512`
453
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
454
+
455
+ | Metric | Value |
456
+ |:--------------------|:-----------|
457
+ | cosine_accuracy@1 | 0.0625 |
458
+ | cosine_accuracy@3 | 0.1099 |
459
+ | cosine_accuracy@5 | 0.1703 |
460
+ | cosine_accuracy@10 | 0.3556 |
461
+ | cosine_precision@1 | 0.0625 |
462
+ | cosine_precision@3 | 0.0366 |
463
+ | cosine_precision@5 | 0.0341 |
464
+ | cosine_precision@10 | 0.0356 |
465
+ | cosine_recall@1 | 0.0625 |
466
+ | cosine_recall@3 | 0.1099 |
467
+ | cosine_recall@5 | 0.1703 |
468
+ | cosine_recall@10 | 0.3556 |
469
+ | cosine_ndcg@10 | 0.1728 |
470
+ | cosine_mrr@10 | 0.1193 |
471
+ | **cosine_map@100** | **0.1455** |
472
+
473
+ #### Information Retrieval
474
+ * Dataset: `dim_256`
475
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
476
+
477
+ | Metric | Value |
478
+ |:--------------------|:-----------|
479
+ | cosine_accuracy@1 | 0.056 |
480
+ | cosine_accuracy@3 | 0.1228 |
481
+ | cosine_accuracy@5 | 0.1724 |
482
+ | cosine_accuracy@10 | 0.3405 |
483
+ | cosine_precision@1 | 0.056 |
484
+ | cosine_precision@3 | 0.0409 |
485
+ | cosine_precision@5 | 0.0345 |
486
+ | cosine_precision@10 | 0.0341 |
487
+ | cosine_recall@1 | 0.056 |
488
+ | cosine_recall@3 | 0.1228 |
489
+ | cosine_recall@5 | 0.1724 |
490
+ | cosine_recall@10 | 0.3405 |
491
+ | cosine_ndcg@10 | 0.168 |
492
+ | cosine_mrr@10 | 0.1168 |
493
+ | **cosine_map@100** | **0.1431** |
494
+
495
+ #### Information Retrieval
496
+ * Dataset: `dim_128`
497
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
498
+
499
+ | Metric | Value |
500
+ |:--------------------|:-----------|
501
+ | cosine_accuracy@1 | 0.0517 |
502
+ | cosine_accuracy@3 | 0.1142 |
503
+ | cosine_accuracy@5 | 0.1832 |
504
+ | cosine_accuracy@10 | 0.319 |
505
+ | cosine_precision@1 | 0.0517 |
506
+ | cosine_precision@3 | 0.0381 |
507
+ | cosine_precision@5 | 0.0366 |
508
+ | cosine_precision@10 | 0.0319 |
509
+ | cosine_recall@1 | 0.0517 |
510
+ | cosine_recall@3 | 0.1142 |
511
+ | cosine_recall@5 | 0.1832 |
512
+ | cosine_recall@10 | 0.319 |
513
+ | cosine_ndcg@10 | 0.1589 |
514
+ | cosine_mrr@10 | 0.1112 |
515
+ | **cosine_map@100** | **0.1376** |
516
+
517
+ #### Information Retrieval
518
+ * Dataset: `dim_64`
519
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
520
+
521
+ | Metric | Value |
522
+ |:--------------------|:-----------|
523
+ | cosine_accuracy@1 | 0.0453 |
524
+ | cosine_accuracy@3 | 0.1056 |
525
+ | cosine_accuracy@5 | 0.1659 |
526
+ | cosine_accuracy@10 | 0.306 |
527
+ | cosine_precision@1 | 0.0453 |
528
+ | cosine_precision@3 | 0.0352 |
529
+ | cosine_precision@5 | 0.0332 |
530
+ | cosine_precision@10 | 0.0306 |
531
+ | cosine_recall@1 | 0.0453 |
532
+ | cosine_recall@3 | 0.1056 |
533
+ | cosine_recall@5 | 0.1659 |
534
+ | cosine_recall@10 | 0.306 |
535
+ | cosine_ndcg@10 | 0.149 |
536
+ | cosine_mrr@10 | 0.1024 |
537
+ | **cosine_map@100** | **0.1259** |
538
+
539
+ <!--
540
+ ## Bias, Risks and Limitations
541
+
542
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
543
+ -->
544
+
545
+ <!--
546
+ ### Recommendations
547
+
548
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
549
+ -->
550
+
551
+ ## Training Details
552
+
553
+ ### Training Dataset
554
+
555
+ #### Unnamed Dataset
556
+
557
+
558
+ * Size: 4,173 training samples
559
+ * Columns: <code>positive</code> and <code>anchor</code>
560
+ * Approximate statistics based on the first 1000 samples:
561
+ | | positive | anchor |
562
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
563
+ | type | string | string |
564
+ | details | <ul><li>min: 8 tokens</li><li>mean: 66.25 tokens</li><li>max: 165 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 28.12 tokens</li><li>max: 62 tokens</li></ul> |
565
+ * Samples:
566
+ | positive | anchor |
567
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
568
+ | <code>La persona titular d'una llicència de vehicle lleuger per al servei públic (auto-taxi), en produïr-se un canvi de vehicle, ha de notificar a l'Ajuntament les dades del nou vehicle.</code> | <code>Quin és el propòsit de la notificació de les dades del nou vehicle?</code> |
569
+ | <code>S'entén per garantia l'ingrés a la Tresoreria de l'Ajuntament d'una quantitat econòmica que garanteix el compliment d'una obligació adquirida amb aquest (garanties de concursos o licitacions, fraccionaments de tributs en via executiva, reposició de paviments per obres, etc.).</code> | <code>Què s'entén per garantia a l'Ajuntament de Sitges?</code> |
570
+ | <code>L'ús d'espais del Centre Cultural Miramar per a la realització d'exposicions.</code> | <code>Quin és el centre cultural on es poden realitzar les exposicions d'art?</code> |
571
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
572
+ ```json
573
+ {
574
+ "loss": "MultipleNegativesRankingLoss",
575
+ "matryoshka_dims": [
576
+ 768,
577
+ 512,
578
+ 256,
579
+ 128,
580
+ 64
581
+ ],
582
+ "matryoshka_weights": [
583
+ 1,
584
+ 1,
585
+ 1,
586
+ 1,
587
+ 1
588
+ ],
589
+ "n_dims_per_step": -1
590
+ }
591
+ ```
592
+
593
+ ### Training Hyperparameters
594
+ #### Non-Default Hyperparameters
595
+
596
+ - `eval_strategy`: epoch
597
+ - `per_device_train_batch_size`: 32
598
+ - `per_device_eval_batch_size`: 16
599
+ - `gradient_accumulation_steps`: 16
600
+ - `learning_rate`: 2e-05
601
+ - `num_train_epochs`: 4
602
+ - `lr_scheduler_type`: cosine
603
+ - `warmup_ratio`: 0.1
604
+ - `bf16`: True
605
+ - `tf32`: False
606
+ - `load_best_model_at_end`: True
607
+ - `optim`: adamw_torch_fused
608
+ - `batch_sampler`: no_duplicates
609
+
610
+ #### All Hyperparameters
611
+ <details><summary>Click to expand</summary>
612
+
613
+ - `overwrite_output_dir`: False
614
+ - `do_predict`: False
615
+ - `eval_strategy`: epoch
616
+ - `prediction_loss_only`: True
617
+ - `per_device_train_batch_size`: 32
618
+ - `per_device_eval_batch_size`: 16
619
+ - `per_gpu_train_batch_size`: None
620
+ - `per_gpu_eval_batch_size`: None
621
+ - `gradient_accumulation_steps`: 16
622
+ - `eval_accumulation_steps`: None
623
+ - `learning_rate`: 2e-05
624
+ - `weight_decay`: 0.0
625
+ - `adam_beta1`: 0.9
626
+ - `adam_beta2`: 0.999
627
+ - `adam_epsilon`: 1e-08
628
+ - `max_grad_norm`: 1.0
629
+ - `num_train_epochs`: 4
630
+ - `max_steps`: -1
631
+ - `lr_scheduler_type`: cosine
632
+ - `lr_scheduler_kwargs`: {}
633
+ - `warmup_ratio`: 0.1
634
+ - `warmup_steps`: 0
635
+ - `log_level`: passive
636
+ - `log_level_replica`: warning
637
+ - `log_on_each_node`: True
638
+ - `logging_nan_inf_filter`: True
639
+ - `save_safetensors`: True
640
+ - `save_on_each_node`: False
641
+ - `save_only_model`: False
642
+ - `restore_callback_states_from_checkpoint`: False
643
+ - `no_cuda`: False
644
+ - `use_cpu`: False
645
+ - `use_mps_device`: False
646
+ - `seed`: 42
647
+ - `data_seed`: None
648
+ - `jit_mode_eval`: False
649
+ - `use_ipex`: False
650
+ - `bf16`: True
651
+ - `fp16`: False
652
+ - `fp16_opt_level`: O1
653
+ - `half_precision_backend`: auto
654
+ - `bf16_full_eval`: False
655
+ - `fp16_full_eval`: False
656
+ - `tf32`: False
657
+ - `local_rank`: 0
658
+ - `ddp_backend`: None
659
+ - `tpu_num_cores`: None
660
+ - `tpu_metrics_debug`: False
661
+ - `debug`: []
662
+ - `dataloader_drop_last`: False
663
+ - `dataloader_num_workers`: 0
664
+ - `dataloader_prefetch_factor`: None
665
+ - `past_index`: -1
666
+ - `disable_tqdm`: False
667
+ - `remove_unused_columns`: True
668
+ - `label_names`: None
669
+ - `load_best_model_at_end`: True
670
+ - `ignore_data_skip`: False
671
+ - `fsdp`: []
672
+ - `fsdp_min_num_params`: 0
673
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
674
+ - `fsdp_transformer_layer_cls_to_wrap`: None
675
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
676
+ - `deepspeed`: None
677
+ - `label_smoothing_factor`: 0.0
678
+ - `optim`: adamw_torch_fused
679
+ - `optim_args`: None
680
+ - `adafactor`: False
681
+ - `group_by_length`: False
682
+ - `length_column_name`: length
683
+ - `ddp_find_unused_parameters`: None
684
+ - `ddp_bucket_cap_mb`: None
685
+ - `ddp_broadcast_buffers`: False
686
+ - `dataloader_pin_memory`: True
687
+ - `dataloader_persistent_workers`: False
688
+ - `skip_memory_metrics`: True
689
+ - `use_legacy_prediction_loop`: False
690
+ - `push_to_hub`: False
691
+ - `resume_from_checkpoint`: None
692
+ - `hub_model_id`: None
693
+ - `hub_strategy`: every_save
694
+ - `hub_private_repo`: False
695
+ - `hub_always_push`: False
696
+ - `gradient_checkpointing`: False
697
+ - `gradient_checkpointing_kwargs`: None
698
+ - `include_inputs_for_metrics`: False
699
+ - `eval_do_concat_batches`: True
700
+ - `fp16_backend`: auto
701
+ - `push_to_hub_model_id`: None
702
+ - `push_to_hub_organization`: None
703
+ - `mp_parameters`:
704
+ - `auto_find_batch_size`: False
705
+ - `full_determinism`: False
706
+ - `torchdynamo`: None
707
+ - `ray_scope`: last
708
+ - `ddp_timeout`: 1800
709
+ - `torch_compile`: False
710
+ - `torch_compile_backend`: None
711
+ - `torch_compile_mode`: None
712
+ - `dispatch_batches`: None
713
+ - `split_batches`: None
714
+ - `include_tokens_per_second`: False
715
+ - `include_num_input_tokens_seen`: False
716
+ - `neftune_noise_alpha`: None
717
+ - `optim_target_modules`: None
718
+ - `batch_eval_metrics`: False
719
+ - `eval_on_start`: False
720
+ - `batch_sampler`: no_duplicates
721
+ - `multi_dataset_batch_sampler`: proportional
722
+
723
+ </details>
724
+
725
+ ### Training Logs
726
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
727
+ |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
728
+ | 0.9771 | 8 | - | 0.1210 | 0.1384 | 0.1341 | 0.1002 | 0.1376 |
729
+ | 1.2137 | 10 | 7.5469 | - | - | - | - | - |
730
+ | **1.9466** | **16** | **-** | **0.136** | **0.1404** | **0.1443** | **0.1249** | **0.1414** |
731
+ | 2.4275 | 20 | 4.0024 | - | - | - | - | - |
732
+ | 2.9160 | 24 | - | 0.1388 | 0.1460 | 0.1446 | 0.1278 | 0.1436 |
733
+ | 3.6412 | 30 | 3.2149 | - | - | - | - | - |
734
+ | 3.8855 | 32 | - | 0.1376 | 0.1431 | 0.1455 | 0.1259 | 0.1488 |
735
+
736
+ * The bold row denotes the saved checkpoint.
737
+
738
+ ### Framework Versions
739
+ - Python: 3.10.12
740
+ - Sentence Transformers: 3.0.1
741
+ - Transformers: 4.42.4
742
+ - PyTorch: 2.3.1+cu121
743
+ - Accelerate: 0.34.0.dev0
744
+ - Datasets: 2.21.0
745
+ - Tokenizers: 0.19.1
746
+
747
+ ## Citation
748
+
749
+ ### BibTeX
750
+
751
+ #### Sentence Transformers
752
+ ```bibtex
753
+ @inproceedings{reimers-2019-sentence-bert,
754
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
755
+ author = "Reimers, Nils and Gurevych, Iryna",
756
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
757
+ month = "11",
758
+ year = "2019",
759
+ publisher = "Association for Computational Linguistics",
760
+ url = "https://arxiv.org/abs/1908.10084",
761
+ }
762
+ ```
763
+
764
+ #### MatryoshkaLoss
765
+ ```bibtex
766
+ @misc{kusupati2024matryoshka,
767
+ title={Matryoshka Representation Learning},
768
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
769
+ year={2024},
770
+ eprint={2205.13147},
771
+ archivePrefix={arXiv},
772
+ primaryClass={cs.LG}
773
+ }
774
+ ```
775
+
776
+ #### MultipleNegativesRankingLoss
777
+ ```bibtex
778
+ @misc{henderson2017efficient,
779
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
780
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
781
+ year={2017},
782
+ eprint={1705.00652},
783
+ archivePrefix={arXiv},
784
+ primaryClass={cs.CL}
785
+ }
786
+ ```
787
+
788
+ <!--
789
+ ## Glossary
790
+
791
+ *Clearly define terms in order to be accessible across audiences.*
792
+ -->
793
+
794
+ <!--
795
+ ## Model Card Authors
796
+
797
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
798
+ -->
799
+
800
+ <!--
801
+ ## Model Card Contact
802
+
803
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
804
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.42.4",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:633ff6ad7f8b28ef1eba82fb01f6241c9c61af3b8b70d25a08f4256146ec815f
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff