abratnap commited on
Commit
f63c00d
1 Parent(s): 512f9ca

bge-m3 model without onnx

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md CHANGED
@@ -1,3 +1,293 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ license: mit
8
+ ---
9
+
10
+ For more details please refer to our github repo: https://github.com/FlagOpen/FlagEmbedding
11
+
12
+ # BGE-M3 ([paper](https://arxiv.org/pdf/2402.03216.pdf), [code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3))
13
+
14
+ In this project, we introduce BGE-M3, which is distinguished for its versatility in Multi-Functionality, Multi-Linguality, and Multi-Granularity.
15
+ - Multi-Functionality: It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval.
16
+ - Multi-Linguality: It can support more than 100 working languages.
17
+ - Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens.
18
+
19
+
20
+
21
+ **Some suggestions for retrieval pipeline in RAG**
22
+
23
+ We recommend to use the following pipeline: hybrid retrieval + re-ranking.
24
+ - Hybrid retrieval leverages the strengths of various methods, offering higher accuracy and stronger generalization capabilities.
25
+ A classic example: using both embedding retrieval and the BM25 algorithm.
26
+ Now, you can try to use BGE-M3, which supports both embedding and sparse retrieval.
27
+ This allows you to obtain token weights (similar to the BM25) without any additional cost when generate dense embeddings.
28
+ To use hybrid retrieval, you can refer to [Vespa](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb
29
+ ) and [Milvus](https://github.com/milvus-io/pymilvus/blob/master/examples/hello_hybrid_sparse_dense.py).
30
+
31
+ - As cross-encoder models, re-ranker demonstrates higher accuracy than bi-encoder embedding model.
32
+ Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker), [bge-reranker-v2](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker)) after retrieval can further filter the selected text.
33
+
34
+
35
+ ## News:
36
+ - 2024/3/20: **Thanks Milvus team!** Now you can use hybrid retrieval of bge-m3 in Milvus: [pymilvus/examples
37
+ /hello_hybrid_sparse_dense.py](https://github.com/milvus-io/pymilvus/blob/master/examples/hello_hybrid_sparse_dense.py).
38
+ - 2024/3/8: **Thanks for the [experimental results](https://towardsdatascience.com/openai-vs-open-source-multilingual-embedding-models-e5ccb7c90f05) from @[Yannael](https://huggingface.co/Yannael). In this benchmark, BGE-M3 achieves top performance in both English and other languages, surpassing models such as OpenAI.**
39
+ - 2024/3/2: Release unified fine-tuning [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/unified_finetune) and [data](https://huggingface.co/datasets/Shitao/bge-m3-data)
40
+ - 2024/2/6: We release the [MLDR](https://huggingface.co/datasets/Shitao/MLDR) (a long document retrieval dataset covering 13 languages) and [evaluation pipeline](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR).
41
+ - 2024/2/1: **Thanks for the excellent tool from Vespa.** You can easily use multiple modes of BGE-M3 following this [notebook](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb)
42
+
43
+
44
+ ## Specs
45
+
46
+ - Model
47
+
48
+ | Model Name | Dimension | Sequence Length | Introduction |
49
+ |:----:|:---:|:---:|:---:|
50
+ | [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | 1024 | 8192 | multilingual; unified fine-tuning (dense, sparse, and colbert) from bge-m3-unsupervised|
51
+ | [BAAI/bge-m3-unsupervised](https://huggingface.co/BAAI/bge-m3-unsupervised) | 1024 | 8192 | multilingual; contrastive learning from bge-m3-retromae |
52
+ | [BAAI/bge-m3-retromae](https://huggingface.co/BAAI/bge-m3-retromae) | -- | 8192 | multilingual; extend the max_length of [xlm-roberta](https://huggingface.co/FacebookAI/xlm-roberta-large) to 8192 and further pretrained via [retromae](https://github.com/staoxiao/RetroMAE)|
53
+ | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | English model |
54
+ | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | English model |
55
+ | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | English model |
56
+
57
+ - Data
58
+
59
+ | Dataset | Introduction |
60
+ |:----------------------------------------------------------:|:-------------------------------------------------:|
61
+ | [MLDR](https://huggingface.co/datasets/Shitao/MLDR) | Docuemtn Retrieval Dataset, covering 13 languages |
62
+ | [bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data) | Fine-tuning data used by bge-m3 |
63
+
64
+
65
+
66
+ ## FAQ
67
+
68
+ **1. Introduction for different retrieval methods**
69
+
70
+ - Dense retrieval: map the text into a single embedding, e.g., [DPR](https://arxiv.org/abs/2004.04906), [BGE-v1.5](https://github.com/FlagOpen/FlagEmbedding)
71
+ - Sparse retrieval (lexical matching): a vector of size equal to the vocabulary, with the majority of positions set to zero, calculating a weight only for tokens present in the text. e.g., BM25, [unicoil](https://arxiv.org/pdf/2106.14807.pdf), and [splade](https://arxiv.org/abs/2107.05720)
72
+ - Multi-vector retrieval: use multiple vectors to represent a text, e.g., [ColBERT](https://arxiv.org/abs/2004.12832).
73
+
74
+
75
+ **2. How to use BGE-M3 in other projects?**
76
+
77
+ For embedding retrieval, you can employ the BGE-M3 model using the same approach as BGE.
78
+ The only difference is that the BGE-M3 model no longer requires adding instructions to the queries.
79
+
80
+ For hybrid retrieval, you can use [Vespa](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb
81
+ ) and [Milvus](https://github.com/milvus-io/pymilvus/blob/master/examples/hello_hybrid_sparse_dense.py).
82
+
83
+
84
+ **3. How to fine-tune bge-M3 model?**
85
+
86
+ You can follow the common in this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune)
87
+ to fine-tune the dense embedding.
88
+
89
+ If you want to fine-tune all embedding function of m3 (dense, sparse and colbert), you can refer to the [unified_fine-tuning example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/unified_finetune)
90
+
91
+
92
+
93
+
94
+
95
+
96
+ ## Usage
97
+
98
+ Install:
99
+ ```
100
+ git clone https://github.com/FlagOpen/FlagEmbedding.git
101
+ cd FlagEmbedding
102
+ pip install -e .
103
+ ```
104
+ or:
105
+ ```
106
+ pip install -U FlagEmbedding
107
+ ```
108
+
109
+
110
+
111
+ ### Generate Embedding for text
112
+
113
+ - Dense Embedding
114
+ ```python
115
+ from FlagEmbedding import BGEM3FlagModel
116
+
117
+ model = BGEM3FlagModel('BAAI/bge-m3',
118
+ use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
119
+
120
+ sentences_1 = ["What is BGE M3?", "Defination of BM25"]
121
+ sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
122
+ "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
123
+
124
+ embeddings_1 = model.encode(sentences_1,
125
+ batch_size=12,
126
+ max_length=8192, # If you don't need such a long length, you can set a smaller value to speed up the encoding process.
127
+ )['dense_vecs']
128
+ embeddings_2 = model.encode(sentences_2)['dense_vecs']
129
+ similarity = embeddings_1 @ embeddings_2.T
130
+ print(similarity)
131
+ # [[0.6265, 0.3477], [0.3499, 0.678 ]]
132
+ ```
133
+ You also can use sentence-transformers and huggingface transformers to generate dense embeddings.
134
+ Refer to [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding#usage) for details.
135
+
136
+
137
+ - Sparse Embedding (Lexical Weight)
138
+ ```python
139
+ from FlagEmbedding import BGEM3FlagModel
140
+
141
+ model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
142
+
143
+ sentences_1 = ["What is BGE M3?", "Defination of BM25"]
144
+ sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
145
+ "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
146
+
147
+ output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=False)
148
+ output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=False)
149
+
150
+ # you can see the weight for each token:
151
+ print(model.convert_id_to_token(output_1['lexical_weights']))
152
+ # [{'What': 0.08356, 'is': 0.0814, 'B': 0.1296, 'GE': 0.252, 'M': 0.1702, '3': 0.2695, '?': 0.04092},
153
+ # {'De': 0.05005, 'fin': 0.1368, 'ation': 0.04498, 'of': 0.0633, 'BM': 0.2515, '25': 0.3335}]
154
+
155
+
156
+ # compute the scores via lexical mathcing
157
+ lexical_scores = model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_2['lexical_weights'][0])
158
+ print(lexical_scores)
159
+ # 0.19554901123046875
160
+
161
+ print(model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_1['lexical_weights'][1]))
162
+ # 0.0
163
+ ```
164
+
165
+ - Multi-Vector (ColBERT)
166
+ ```python
167
+ from FlagEmbedding import BGEM3FlagModel
168
+
169
+ model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True)
170
+
171
+ sentences_1 = ["What is BGE M3?", "Defination of BM25"]
172
+ sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
173
+ "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
174
+
175
+ output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=True)
176
+ output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=True)
177
+
178
+ print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][0]))
179
+ print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][1]))
180
+ # 0.7797
181
+ # 0.4620
182
+ ```
183
+
184
+
185
+ ### Compute score for text pairs
186
+ Input a list of text pairs, you can get the scores computed by different methods.
187
+ ```python
188
+ from FlagEmbedding import BGEM3FlagModel
189
+
190
+ model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True)
191
+
192
+ sentences_1 = ["What is BGE M3?", "Defination of BM25"]
193
+ sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
194
+ "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
195
+
196
+ sentence_pairs = [[i,j] for i in sentences_1 for j in sentences_2]
197
+
198
+ print(model.compute_score(sentence_pairs,
199
+ max_passage_length=128, # a smaller max length leads to a lower latency
200
+ weights_for_different_modes=[0.4, 0.2, 0.4])) # weights_for_different_modes(w) is used to do weighted sum: w[0]*dense_score + w[1]*sparse_score + w[2]*colbert_score
201
+
202
+ # {
203
+ # 'colbert': [0.7796499729156494, 0.4621465802192688, 0.4523794651031494, 0.7898575067520142],
204
+ # 'sparse': [0.195556640625, 0.00879669189453125, 0.0, 0.1802978515625],
205
+ # 'dense': [0.6259765625, 0.347412109375, 0.349853515625, 0.67822265625],
206
+ # 'sparse+dense': [0.482503205537796, 0.23454029858112335, 0.2332356721162796, 0.5122477412223816],
207
+ # 'colbert+sparse+dense': [0.6013619303703308, 0.3255828022956848, 0.32089319825172424, 0.6232916116714478]
208
+ # }
209
+ ```
210
+
211
+
212
+
213
+
214
+ ## Evaluation
215
+
216
+ We provide the evaluation script for [MKQA](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MKQA) and [MLDR](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR)
217
+
218
+ ### Benchmarks from the open-source community
219
+ ![avatar](./imgs/others.webp)
220
+ The BGE-M3 model emerged as the top performer on this benchmark (OAI is short for OpenAI).
221
+ For more details, please refer to the [article](https://towardsdatascience.com/openai-vs-open-source-multilingual-embedding-models-e5ccb7c90f05) and [Github Repo](https://github.com/Yannael/multilingual-embeddings)
222
+
223
+
224
+ ### Our results
225
+ - Multilingual (Miracl dataset)
226
+
227
+ ![avatar](./imgs/miracl.jpg)
228
+
229
+ - Cross-lingual (MKQA dataset)
230
+
231
+ ![avatar](./imgs/mkqa.jpg)
232
+
233
+ - Long Document Retrieval
234
+ - MLDR:
235
+ ![avatar](./imgs/long.jpg)
236
+ Please note that [MLDR](https://huggingface.co/datasets/Shitao/MLDR) is a document retrieval dataset we constructed via LLM,
237
+ covering 13 languages, including test set, validation set, and training set.
238
+ We utilized the training set from MLDR to enhance the model's long document retrieval capabilities.
239
+ Therefore, comparing baselines with `Dense w.o.long`(fine-tuning without long document dataset) is more equitable.
240
+ Additionally, this long document retrieval dataset will be open-sourced to address the current lack of open-source multilingual long text retrieval datasets.
241
+ We believe that this data will be helpful for the open-source community in training document retrieval models.
242
+
243
+ - NarritiveQA:
244
+ ![avatar](./imgs/nqa.jpg)
245
+
246
+ - Comparison with BM25
247
+
248
+ We utilized Pyserini to implement BM25, and the test results can be reproduced by this [script](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR#bm25-baseline).
249
+ We tested BM25 using two different tokenizers:
250
+ one using Lucene Analyzer and the other using the same tokenizer as M3 (i.e., the tokenizer of xlm-roberta).
251
+ The results indicate that BM25 remains a competitive baseline,
252
+ especially in long document retrieval.
253
+
254
+ ![avatar](./imgs/bm25.jpg)
255
+
256
+
257
+
258
+ ## Training
259
+ - Self-knowledge Distillation: combining multiple outputs from different
260
+ retrieval modes as reward signal to enhance the performance of single mode(especially for sparse retrieval and multi-vec(colbert) retrival)
261
+ - Efficient Batching: Improve the efficiency when fine-tuning on long text.
262
+ The small-batch strategy is simple but effective, which also can used to fine-tune large embedding model.
263
+ - MCLS: A simple method to improve the performance on long text without fine-tuning.
264
+ If you have no enough resource to fine-tuning model with long text, the method is useful.
265
+
266
+ Refer to our [report](https://arxiv.org/pdf/2402.03216.pdf) for more details.
267
+
268
+
269
+
270
+
271
+
272
+
273
+ ## Acknowledgement
274
+
275
+ Thanks to the authors of open-sourced datasets, including Miracl, MKQA, NarritiveQA, etc.
276
+ Thanks to the open-sourced libraries like [Tevatron](https://github.com/texttron/tevatron), [Pyserini](https://github.com/castorini/pyserini).
277
+
278
+
279
+
280
+ ## Citation
281
+
282
+ If you find this repository useful, please consider giving a star :star: and citation
283
+
284
+ ```
285
+ @misc{bge-m3,
286
+ title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
287
+ author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
288
+ year={2024},
289
+ eprint={2402.03216},
290
+ archivePrefix={arXiv},
291
+ primaryClass={cs.CL}
292
+ }
293
+ ```
colbert_linear.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19bfbae397c2b7524158c919d0e9b19393c5639d098f0a66932c91ed8f5f9abb
3
+ size 2100674
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.33.0",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.33.0",
5
+ "pytorch": "2.1.2+cu121"
6
+ }
7
+ }
imgs/.DS_Store ADDED
Binary file (6.15 kB). View file
 
imgs/bm25.jpg ADDED
imgs/long.jpg ADDED
imgs/miracl.jpg ADDED
imgs/mkqa.jpg ADDED
imgs/nqa.jpg ADDED
imgs/others.webp ADDED
long.jpg ADDED
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5e0ce3470abf5ef3831aa1bd5553b486803e83251590ab7ff35a117cf6aad38
3
+ size 2271145830
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
sparse_linear.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45c93804d2142b8f6d7ec6914ae23a1eee9c6a1d27d83d908a20d2afb3595ad9
3
+ size 3516
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21106b6d7dab2952c1d496fb21d5dc9db75c28ed361a05f5020bbba27810dd08
3
+ size 17098108
tokenizer_config.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "clean_up_tokenization_spaces": true,
4
+ "cls_token": "<s>",
5
+ "eos_token": "</s>",
6
+ "mask_token": {
7
+ "__type": "AddedToken",
8
+ "content": "<mask>",
9
+ "lstrip": true,
10
+ "normalized": true,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "model_max_length": 8192,
15
+ "pad_token": "<pad>",
16
+ "sep_token": "</s>",
17
+ "sp_model_kwargs": {},
18
+ "tokenizer_class": "XLMRobertaTokenizer",
19
+ "unk_token": "<unk>"
20
+ }