--- license: cc-by-nc-4.0 base_model: mlabonne/NeuralMonarch-7B tags: - generated_from_trainer - mistral - instruct - finetune - chatml - gpt4 - synthetic data - distillation model-index: - name: AlphaMonarch-dora results: [] datasets: - argilla/OpenHermes2.5-dpo-binarized-alpha language: - en library_name: transformers pipeline_tag: text-generation --- # AlphaMonarch-dora ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64fc6d81d75293f417fee1d1/7xlnpalOC4qtu-VABsib4.jpeg) AlphaMonarch-dora is a DPO fine-tuned of [mlabonne/NeuralMonarch-7B](https://huggingface.co./mlabonne/NeuralMonarch-7B/) using the [argilla/OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co./datasets/argilla/OpenHermes2.5-dpo-binarized-alpha) preference dataset using DoRA. This model is slightly less performant on the Nous and Openllm leaderboards in comparison to base [AlphaMonarch](https://huggingface.co./mlabonne/AlphaMonarch-7B) and [AlphaMonarch-laser](https://huggingface.co./abideen/AlphaMonarch-laser). I have trained this model for 1080 steps. All hyperparams were kept consist across all these experiments. ## 🏆 Evaluation results # OpenLLM Benchmark ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/mVwB5NB0XcUwqharYhDGr.png) # Nous Benchmark Thanks to [Muhammad Bin Usman](https://www.linkedin.com/in/muhammad-bin-usman/) for evaluating AlphaMonarch-DoRA on the NOUS benchmark. ### AGIEVAL | Task | Version | Accuracy | Accuracy StdErr | Normalized Accuracy | Normalized Accuracy StdErr | |--------------------------------|---------|----------|-----------------|---------------------|-----------------------------| | agieval_aqua_rat | 0 | 28.35% | 2.83% | 26.38% | 2.77% | | agieval_logiqa_en | 0 | 38.71% | 1.91% | 38.25% | 1.90% | | agieval_lsat_ar | 0 | 23.91% | 2.82% | 23.48% | 2.80% | | agieval_lsat_lr | 0 | 52.55% | 2.21% | 53.73% | 2.21% | | agieval_lsat_rc | 0 | 66.91% | 2.87% | 66.54% | 2.88% | | agieval_sat_en | 0 | 78.64% | 2.86% | 78.64% | 2.86% | | agieval_sat_en_without_passage | 0 | 45.15% | 3.48% | 44.17% | 3.47% | | agieval_sat_math | 0 | 33.64% | 3.19% | 31.82% | 3.15% | AVG = 45.976 ### GPT4ALL | Task | Version | Accuracy | Accuracy StdErr | Normalized Accuracy | Normalized Accuracy StdErr | |--------------|---------|----------|-----------------|---------------------|-----------------------------| | arc_challenge| 0 | 65.87% | 1.39% | 67.92% | 1.36% | | arc_easy | 0 | 86.49% | 0.70% | 80.64% | 0.81% | | boolq | 1 | 87.16% | 0.59% | - | - | | hellaswag | 0 | 69.86% | 0.46% | 87.51% | 0.33% | | openbookqa | 0 | 39.00% | 2.18% | 49.20% | 2.24% | | piqa | 0 | 83.03% | 0.88% | 84.82% | 0.84% | | winogrande | 0 | 80.98% | 1.10% | - | - | AVG = 73.18 ### TRUTHFUL-QA | Task | Version | MC1 Accuracy | MC1 Accuracy StdErr | MC2 Accuracy | MC2 Accuracy StdErr | |---------------|---------|--------------|---------------------|--------------|---------------------| | truthfulqa_mc | 1 | 62.91% | 1.69% | 78.48% | 1.37% | AVG = 70.69 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-7 - train_batch_size: 2 - eval_batch_size: Not specified - seed: Not specified - gradient_accumulation_steps: 8 - total_train_batch_size: Not specified - optimizer: PagedAdamW with 32-bit precision - lr_scheduler_type: Cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1080 ### Framework versions - Transformers 4.39.0.dev0 - Peft 0.9.1.dev0 - Datasets 2.18.0 - torch 2.2.0 - accelerate 0.27.2