File size: 4,644 Bytes
1783b44
b3b50fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1783b44
b3b50fb
1783b44
de6fa19
 
b3b50fb
1783b44
de6fa19
1783b44
 
b3b50fb
1783b44
 
b3b50fb
1783b44
b3b50fb
1783b44
 
b3b50fb
1783b44
b3b50fb
1783b44
2d29fa6
 
b3b50fb
1783b44
b3b50fb
 
 
 
 
 
 
 
 
 
1783b44
b3b50fb
1783b44
b3b50fb
1783b44
b3b50fb
 
 
 
 
 
 
 
 
1783b44
b3b50fb
1783b44
b3b50fb
1783b44
b3b50fb
 
 
1783b44
b3b50fb
1783b44
b3b50fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
license: cc-by-nc-4.0
base_model: mlabonne/NeuralMonarch-7B
tags:
- generated_from_trainer
- mistral
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- distillation
model-index:
- name: AlphaMonarch-dora
  results: []
datasets:
- argilla/OpenHermes2.5-dpo-binarized-alpha
language:
- en
library_name: transformers
pipeline_tag: text-generation
---
# AlphaMonarch-dora

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64fc6d81d75293f417fee1d1/7xlnpalOC4qtu-VABsib4.jpeg)



<!-- Provide a quick summary of what the model is/does. -->
AlphaMonarch-dora is a DPO fine-tuned of [mlabonne/NeuralMonarch-7B](https://huggingface.co./mlabonne/NeuralMonarch-7B/) using the [argilla/OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co./datasets/argilla/OpenHermes2.5-dpo-binarized-alpha) preference dataset using DoRA. This model is slightly less performant on the Nous and Openllm leaderboards in comparison to base [AlphaMonarch](https://huggingface.co./mlabonne/AlphaMonarch-7B) and [AlphaMonarch-laser](https://huggingface.co./abideen/AlphaMonarch-laser). I have trained this model for 1080 steps. All hyperparams were kept consist across all these experiments.


## 🏆 Evaluation results

# OpenLLM Benchmark


![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/mVwB5NB0XcUwqharYhDGr.png)

# Nous Benchmark

Thanks to [Muhammad Bin Usman](https://www.linkedin.com/in/muhammad-bin-usman/) for evaluating AlphaMonarch-DoRA on the NOUS benchmark.

### AGIEVAL

| Task                           | Version | Accuracy | Accuracy StdErr | Normalized Accuracy | Normalized Accuracy StdErr |
|--------------------------------|---------|----------|-----------------|---------------------|-----------------------------|
| agieval_aqua_rat               | 0       | 28.35%   | 2.83%           | 26.38%              | 2.77%                       |
| agieval_logiqa_en              | 0       | 38.71%   | 1.91%           | 38.25%              | 1.90%                       |
| agieval_lsat_ar                | 0       | 23.91%   | 2.82%           | 23.48%              | 2.80%                       |
| agieval_lsat_lr                | 0       | 52.55%   | 2.21%           | 53.73%              | 2.21%                       |
| agieval_lsat_rc                | 0       | 66.91%   | 2.87%           | 66.54%              | 2.88%                       |
| agieval_sat_en                 | 0       | 78.64%   | 2.86%           | 78.64%              | 2.86%                       |
| agieval_sat_en_without_passage | 0       | 45.15%   | 3.48%           | 44.17%              | 3.47%                       |
| agieval_sat_math               | 0       | 33.64%   | 3.19%           | 31.82%              | 3.15%                       |

AVG = 45.976

### GPT4ALL

| Task         | Version | Accuracy | Accuracy StdErr | Normalized Accuracy | Normalized Accuracy StdErr |
|--------------|---------|----------|-----------------|---------------------|-----------------------------|
| arc_challenge| 0       | 65.87%   | 1.39%           | 67.92%              | 1.36%                       |
| arc_easy     | 0       | 86.49%   | 0.70%           | 80.64%              | 0.81%                       |
| boolq        | 1       | 87.16%   | 0.59%           | -                   | -                           |
| hellaswag    | 0       | 69.86%   | 0.46%           | 87.51%              | 0.33%                       |
| openbookqa   | 0       | 39.00%   | 2.18%           | 49.20%              | 2.24%                       |
| piqa         | 0       | 83.03%   | 0.88%           | 84.82%              | 0.84%                       |
| winogrande   | 0       | 80.98%   | 1.10%           | -                   | -                           |

AVG = 73.18

### TRUTHFUL-QA

| Task          | Version | MC1 Accuracy | MC1 Accuracy StdErr | MC2 Accuracy | MC2 Accuracy StdErr |
|---------------|---------|--------------|---------------------|--------------|---------------------|
| truthfulqa_mc | 1       | 62.91%       | 1.69%               | 78.48%       | 1.37%               |

AVG = 70.69

### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-7
- train_batch_size: 2
- eval_batch_size: Not specified
- seed: Not specified
- gradient_accumulation_steps: 8
- total_train_batch_size: Not specified
- optimizer: PagedAdamW with 32-bit precision
- lr_scheduler_type: Cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1080
### Framework versions
- Transformers 4.39.0.dev0
- Peft 0.9.1.dev0
- Datasets 2.18.0
- torch 2.2.0
- accelerate 0.27.2