File size: 2,025 Bytes
fab52c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
- audio-classification
- deepfake
- audio-spoof
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-base-960h-asv19-deepfake
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-960h-asv19-deepfake

This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co./facebook/wav2vec2-base-960h) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1594
- Accuracy: 0.9610
- Far: 0.0098
- Frr: 0.0423
- Eer: 0.0261

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | Far    | Frr    | Eer    |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:------:|
| 0.4231        | 0.39  | 2500  | 0.3092          | 0.8974   | 1.0    | 0.0    | 0.5    |
| 0.2276        | 0.79  | 5000  | 0.0955          | 0.9762   | 0.0530 | 0.0205 | 0.0367 |
| 0.0979        | 1.18  | 7500  | 0.1456          | 0.9555   | 0.0122 | 0.0482 | 0.0302 |
| 0.0784        | 1.58  | 10000 | 0.1613          | 0.9586   | 0.0094 | 0.0451 | 0.0272 |
| 0.0618        | 1.97  | 12500 | 0.1594          | 0.9610   | 0.0098 | 0.0423 | 0.0261 |


### Framework versions

- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.2.dev0
- Tokenizers 0.15.2