abhijsrwala
commited on
Create handler.py
Browse files- handler.py +32 -0
handler.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load model and tokenizer globally
|
5 |
+
MODEL_NAME = "abhijsrwala/lora_model"
|
6 |
+
|
7 |
+
def load_model():
|
8 |
+
# Load the model and tokenizer
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
11 |
+
return model, tokenizer
|
12 |
+
|
13 |
+
# Load model once to avoid reloading on every request
|
14 |
+
model, tokenizer = load_model()
|
15 |
+
|
16 |
+
def handle_request(input_data):
|
17 |
+
"""
|
18 |
+
Handles inference requests.
|
19 |
+
Args:
|
20 |
+
input_data (str): The input text prompt.
|
21 |
+
Returns:
|
22 |
+
str: The model's response.
|
23 |
+
"""
|
24 |
+
# Tokenize the input text
|
25 |
+
inputs = tokenizer.encode(input_data, return_tensors="pt")
|
26 |
+
|
27 |
+
# Generate text
|
28 |
+
outputs = model.generate(inputs, max_length=200, num_return_sequences=1)
|
29 |
+
|
30 |
+
# Decode the output
|
31 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
32 |
+
return response
|