Upload 3 files
Browse files- MyPipe.py +76 -0
- preprocessor_config.json +23 -0
- utilities.py +25 -0
MyPipe.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, os
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torchvision.transforms.functional import normalize
|
4 |
+
import numpy as np
|
5 |
+
from transformers import Pipeline
|
6 |
+
from transformers.image_utils import load_image
|
7 |
+
from skimage import io
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
class RMBGPipe(Pipeline):
|
11 |
+
def __init__(self,**kwargs):
|
12 |
+
Pipeline.__init__(self,**kwargs)
|
13 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
14 |
+
self.model.to(self.device)
|
15 |
+
self.model.eval()
|
16 |
+
|
17 |
+
def _sanitize_parameters(self, **kwargs):
|
18 |
+
# parse parameters
|
19 |
+
preprocess_kwargs = {}
|
20 |
+
postprocess_kwargs = {}
|
21 |
+
if "model_input_size" in kwargs :
|
22 |
+
preprocess_kwargs["model_input_size"] = kwargs["model_input_size"]
|
23 |
+
if "return_mask" in kwargs:
|
24 |
+
postprocess_kwargs["return_mask"] = kwargs["return_mask"]
|
25 |
+
return preprocess_kwargs, {}, postprocess_kwargs
|
26 |
+
|
27 |
+
def preprocess(self,input_image,model_input_size: list=[1024,1024]):
|
28 |
+
# preprocess the input
|
29 |
+
orig_im = load_image(input_image)
|
30 |
+
orig_im = np.array(orig_im)
|
31 |
+
orig_im_size = orig_im.shape[0:2]
|
32 |
+
preprocessed_image = self.preprocess_image(orig_im, model_input_size).to(self.device)
|
33 |
+
inputs = {
|
34 |
+
"preprocessed_image":preprocessed_image,
|
35 |
+
"orig_im_size":orig_im_size,
|
36 |
+
"input_image" : input_image
|
37 |
+
}
|
38 |
+
return inputs
|
39 |
+
|
40 |
+
def _forward(self,inputs):
|
41 |
+
result = self.model(inputs.pop("preprocessed_image"))
|
42 |
+
inputs["result"] = result
|
43 |
+
return inputs
|
44 |
+
|
45 |
+
def postprocess(self,inputs,return_mask:bool=False ):
|
46 |
+
result = inputs.pop("result")
|
47 |
+
orig_im_size = inputs.pop("orig_im_size")
|
48 |
+
input_image = inputs.pop("input_image")
|
49 |
+
result_image = self.postprocess_image(result[0][0], orig_im_size)
|
50 |
+
pil_im = Image.fromarray(result_image)
|
51 |
+
if return_mask ==True :
|
52 |
+
return pil_im
|
53 |
+
no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0))
|
54 |
+
input_image = load_image(input_image)
|
55 |
+
no_bg_image.paste(input_image, mask=pil_im)
|
56 |
+
return no_bg_image
|
57 |
+
|
58 |
+
# utilities functions
|
59 |
+
def preprocess_image(self,im: np.ndarray, model_input_size: list=[1024,1024]) -> torch.Tensor:
|
60 |
+
# same as utilities.py with minor modification
|
61 |
+
if len(im.shape) < 3:
|
62 |
+
im = im[:, :, np.newaxis]
|
63 |
+
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
|
64 |
+
im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=model_input_size, mode='bilinear')
|
65 |
+
image = torch.divide(im_tensor,255.0)
|
66 |
+
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
67 |
+
return image
|
68 |
+
|
69 |
+
def postprocess_image(self,result: torch.Tensor, im_size: list)-> np.ndarray:
|
70 |
+
result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear') ,0)
|
71 |
+
ma = torch.max(result)
|
72 |
+
mi = torch.min(result)
|
73 |
+
result = (result-mi)/(ma-mi)
|
74 |
+
im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8)
|
75 |
+
im_array = np.squeeze(im_array)
|
76 |
+
return im_array
|
preprocessor_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"do_pad": false,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.5,
|
8 |
+
0.5,
|
9 |
+
0.5
|
10 |
+
],
|
11 |
+
"feature_extractor_type": "ImageFeatureExtractor",
|
12 |
+
"image_std": [
|
13 |
+
1,
|
14 |
+
1,
|
15 |
+
1
|
16 |
+
],
|
17 |
+
"resample": 2,
|
18 |
+
"rescale_factor": 0.00392156862745098,
|
19 |
+
"size": {
|
20 |
+
"width": 1024,
|
21 |
+
"height": 1024
|
22 |
+
}
|
23 |
+
}
|
utilities.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torchvision.transforms.functional import normalize
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
def preprocess_image(im: np.ndarray, model_input_size: list) -> torch.Tensor:
|
7 |
+
if len(im.shape) < 3:
|
8 |
+
im = im[:, :, np.newaxis]
|
9 |
+
# orig_im_size=im.shape[0:2]
|
10 |
+
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
|
11 |
+
im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=model_input_size, mode='bilinear').type(torch.uint8)
|
12 |
+
image = torch.divide(im_tensor,255.0)
|
13 |
+
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
14 |
+
return image
|
15 |
+
|
16 |
+
|
17 |
+
def postprocess_image(result: torch.Tensor, im_size: list)-> np.ndarray:
|
18 |
+
result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear') ,0)
|
19 |
+
ma = torch.max(result)
|
20 |
+
mi = torch.min(result)
|
21 |
+
result = (result-mi)/(ma-mi)
|
22 |
+
im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8)
|
23 |
+
im_array = np.squeeze(im_array)
|
24 |
+
return im_array
|
25 |
+
|