|
|
|
|
|
from __future__ import annotations |
|
|
|
import logging |
|
import argparse |
|
import contextlib |
|
import json |
|
import os |
|
import re |
|
import sys |
|
from abc import ABC, abstractmethod |
|
from enum import IntEnum |
|
from pathlib import Path |
|
from hashlib import sha256 |
|
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast |
|
|
|
import numpy as np |
|
import torch |
|
|
|
if TYPE_CHECKING: |
|
from torch import Tensor |
|
|
|
if 'NO_LOCAL_GGUF' not in os.environ: |
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) |
|
import gguf |
|
|
|
from convert import LlamaHfVocab, permute |
|
|
|
logger = logging.getLogger("hf-to-gguf") |
|
|
|
|
|
|
|
|
|
class SentencePieceTokenTypes(IntEnum): |
|
NORMAL = 1 |
|
UNKNOWN = 2 |
|
CONTROL = 3 |
|
USER_DEFINED = 4 |
|
UNUSED = 5 |
|
BYTE = 6 |
|
|
|
|
|
AnyModel = TypeVar("AnyModel", bound="type[Model]") |
|
|
|
|
|
class Model(ABC): |
|
_model_classes: dict[str, type[Model]] = {} |
|
|
|
def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool, use_temp_file: bool): |
|
self.dir_model = dir_model |
|
self.ftype = ftype |
|
self.fname_out = fname_out |
|
self.is_big_endian = is_big_endian |
|
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE |
|
self.use_temp_file = use_temp_file |
|
self.is_safetensors = self._is_model_safetensors() |
|
self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin") |
|
self.part_names = self._get_part_names() |
|
self.hparams = Model.load_hparams(self.dir_model) |
|
self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file) |
|
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"]) |
|
|
|
@property |
|
@abstractmethod |
|
def model_arch(self) -> gguf.MODEL_ARCH: |
|
pass |
|
|
|
def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any: |
|
key = next((k for k in keys if k in self.hparams), None) |
|
if key is not None: |
|
return self.hparams[key] |
|
if optional: |
|
return None |
|
raise KeyError(f"could not find any of: {keys}") |
|
|
|
def set_vocab(self): |
|
self._set_vocab_gpt2() |
|
|
|
def get_tensors(self) -> Iterator[tuple[str, Tensor]]: |
|
for part_name in self.part_names: |
|
logger.info(f"gguf: loading model part '{part_name}'") |
|
ctx: ContextManager[Any] |
|
if self.is_safetensors: |
|
from safetensors import safe_open |
|
ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu")) |
|
else: |
|
ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True)) |
|
|
|
with ctx as model_part: |
|
for name in model_part.keys(): |
|
data = model_part.get_tensor(name) if self.is_safetensors else model_part[name] |
|
yield name, data |
|
|
|
def set_gguf_parameters(self): |
|
self.gguf_writer.add_name(self.dir_model.name) |
|
self.gguf_writer.add_block_count(self.block_count) |
|
|
|
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None: |
|
self.gguf_writer.add_context_length(n_ctx) |
|
logger.info(f"gguf: context length = {n_ctx}") |
|
|
|
n_embd = self.find_hparam(["hidden_size", "n_embd"]) |
|
self.gguf_writer.add_embedding_length(n_embd) |
|
logger.info(f"gguf: embedding length = {n_embd}") |
|
|
|
if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None: |
|
self.gguf_writer.add_feed_forward_length(n_ff) |
|
logger.info(f"gguf: feed forward length = {n_ff}") |
|
|
|
n_head = self.find_hparam(["num_attention_heads", "n_head"]) |
|
self.gguf_writer.add_head_count(n_head) |
|
logger.info(f"gguf: head count = {n_head}") |
|
|
|
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None: |
|
self.gguf_writer.add_head_count_kv(n_head_kv) |
|
logger.info(f"gguf: key-value head count = {n_head_kv}") |
|
|
|
if (rope_theta := self.hparams.get("rope_theta")) is not None: |
|
self.gguf_writer.add_rope_freq_base(rope_theta) |
|
logger.info(f"gguf: rope theta = {rope_theta}") |
|
if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None: |
|
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps) |
|
logger.info(f"gguf: rms norm epsilon = {f_rms_eps}") |
|
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None: |
|
self.gguf_writer.add_layer_norm_eps(f_norm_eps) |
|
logger.info(f"gguf: layer norm epsilon = {f_norm_eps}") |
|
if (n_experts := self.hparams.get("num_local_experts")) is not None: |
|
self.gguf_writer.add_expert_count(n_experts) |
|
logger.info(f"gguf: expert count = {n_experts}") |
|
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None: |
|
self.gguf_writer.add_expert_used_count(n_experts_used) |
|
logger.info(f"gguf: experts used count = {n_experts_used}") |
|
|
|
self.gguf_writer.add_file_type(self.ftype) |
|
logger.info(f"gguf: file type = {self.ftype}") |
|
|
|
def write_tensors(self): |
|
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
for name, data_torch in self.get_tensors(): |
|
|
|
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")): |
|
continue |
|
|
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
data = data_torch.squeeze().numpy() |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
print(f"Can not map tensor {name!r}") |
|
continue |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")): |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
def write(self): |
|
self.write_tensors() |
|
self.gguf_writer.write_header_to_file() |
|
self.gguf_writer.write_kv_data_to_file() |
|
self.gguf_writer.write_tensors_to_file() |
|
self.gguf_writer.close() |
|
|
|
def write_vocab(self): |
|
self.gguf_writer.write_header_to_file() |
|
self.gguf_writer.write_kv_data_to_file() |
|
self.gguf_writer.close() |
|
|
|
@staticmethod |
|
def count_model_parts(dir_model: Path, prefix: str) -> int: |
|
num_parts = 0 |
|
for filename in os.listdir(dir_model): |
|
if filename.endswith(prefix): |
|
num_parts += 1 |
|
|
|
return num_parts |
|
|
|
@staticmethod |
|
def load_hparams(dir_model): |
|
with open(dir_model / "config.json", "r", encoding="utf-8") as f: |
|
return json.load(f) |
|
|
|
@classmethod |
|
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]: |
|
assert names |
|
|
|
def func(modelcls: type[Model]): |
|
for name in names: |
|
cls._model_classes[name] = modelcls |
|
return modelcls |
|
return func |
|
|
|
@classmethod |
|
def from_model_architecture(cls, arch): |
|
try: |
|
return cls._model_classes[arch] |
|
except KeyError: |
|
raise NotImplementedError(f'Architecture {arch!r} not supported!') from None |
|
|
|
def _is_model_safetensors(self) -> bool: |
|
return Model.count_model_parts(self.dir_model, ".safetensors") > 0 |
|
|
|
def _get_part_names(self): |
|
if self.is_safetensors: |
|
if self.num_parts == 1: |
|
return ("model.safetensors",) |
|
return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1)) |
|
|
|
if self.num_parts == 1: |
|
return ("pytorch_model.bin",) |
|
return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1)) |
|
|
|
|
|
def get_vocab_base(self) -> tuple[list[str], list[int], str]: |
|
tokens: list[str] = [] |
|
toktypes: list[int] = [] |
|
|
|
from transformers import AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(self.dir_model) |
|
vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab)) |
|
assert max(tokenizer.vocab.values()) < vocab_size |
|
|
|
tokpre = self.get_vocab_base_pre(tokenizer) |
|
|
|
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()} |
|
added_vocab = tokenizer.get_added_vocab() |
|
|
|
for i in range(vocab_size): |
|
if i not in reverse_vocab: |
|
tokens.append(f"[PAD{i}]") |
|
toktypes.append(gguf.TokenType.USER_DEFINED) |
|
elif reverse_vocab[i] in added_vocab: |
|
tokens.append(reverse_vocab[i]) |
|
if tokenizer.added_tokens_decoder[i].special: |
|
toktypes.append(gguf.TokenType.CONTROL) |
|
else: |
|
toktypes.append(gguf.TokenType.USER_DEFINED) |
|
else: |
|
tokens.append(reverse_vocab[i]) |
|
toktypes.append(gguf.TokenType.NORMAL) |
|
|
|
return tokens, toktypes, tokpre |
|
|
|
|
|
|
|
|
|
def get_vocab_base_pre(self, tokenizer) -> str: |
|
|
|
|
|
|
|
|
|
|
|
chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL' |
|
|
|
chktok = tokenizer.encode(chktxt) |
|
chkhsh = sha256(str(chktok).encode()).hexdigest() |
|
|
|
logger.debug(f"chktok: {chktok}") |
|
logger.debug(f"chkhsh: {chkhsh}") |
|
|
|
res = None |
|
|
|
|
|
|
|
|
|
if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5": |
|
|
|
res = "llama-bpe" |
|
if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754": |
|
|
|
res = "deepseek-llm" |
|
if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821": |
|
|
|
res = "deepseek-coder" |
|
if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed": |
|
|
|
res = "falcon" |
|
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f": |
|
|
|
res = "bert-bge" |
|
if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166": |
|
|
|
res = "mpt" |
|
if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34": |
|
|
|
res = "starcoder" |
|
if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454": |
|
|
|
res = "gpt-2" |
|
if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff": |
|
|
|
res = "refact" |
|
if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8": |
|
|
|
res = "command-r" |
|
if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea": |
|
|
|
res = "qwen2" |
|
if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166": |
|
|
|
res = "olmo" |
|
if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e": |
|
|
|
res = "dbrx" |
|
|
|
if res is None: |
|
logger.warning("\n") |
|
logger.warning("**************************************************************************************") |
|
logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!") |
|
logger.warning("** There are 2 possible reasons for this:") |
|
logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet") |
|
logger.warning("** - the pre-tokenization config has changed upstream") |
|
logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.") |
|
logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920") |
|
logger.warning("**") |
|
logger.warning(f"** chkhsh: {chkhsh}") |
|
logger.warning("**************************************************************************************") |
|
logger.warning("\n") |
|
raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()") |
|
|
|
logger.debug(f"tokenizer.ggml.pre: {repr(res)}") |
|
logger.debug(f"chkhsh: {chkhsh}") |
|
|
|
return res |
|
|
|
def _set_vocab_gpt2(self) -> None: |
|
tokens, toktypes, tokpre = self.get_vocab_base() |
|
self.gguf_writer.add_tokenizer_model("gpt2") |
|
self.gguf_writer.add_tokenizer_pre(tokpre) |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_types(toktypes) |
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def _set_vocab_qwen(self): |
|
dir_model = self.dir_model |
|
hparams = self.hparams |
|
tokens: list[str] = [] |
|
toktypes: list[int] = [] |
|
|
|
from transformers import AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) |
|
vocab_size = hparams["vocab_size"] |
|
assert max(tokenizer.get_vocab().values()) < vocab_size |
|
|
|
tokpre = self.get_vocab_base_pre(tokenizer) |
|
|
|
merges = [] |
|
vocab = {} |
|
mergeable_ranks = tokenizer.mergeable_ranks |
|
for token, rank in mergeable_ranks.items(): |
|
vocab[QwenModel.token_bytes_to_string(token)] = rank |
|
if len(token) == 1: |
|
continue |
|
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank) |
|
assert len(merged) == 2 |
|
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged))) |
|
|
|
|
|
added_vocab = tokenizer.special_tokens |
|
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()} |
|
|
|
for i in range(vocab_size): |
|
if i not in reverse_vocab: |
|
tokens.append(f"[PAD{i}]") |
|
toktypes.append(gguf.TokenType.USER_DEFINED) |
|
elif reverse_vocab[i] in added_vocab: |
|
tokens.append(reverse_vocab[i]) |
|
toktypes.append(gguf.TokenType.CONTROL) |
|
else: |
|
tokens.append(reverse_vocab[i]) |
|
toktypes.append(gguf.TokenType.NORMAL) |
|
|
|
self.gguf_writer.add_tokenizer_model("gpt2") |
|
self.gguf_writer.add_tokenizer_pre(tokpre) |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_types(toktypes) |
|
|
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges=False) |
|
special_vocab.merges = merges |
|
|
|
if len(special_vocab.special_token_ids) == 0: |
|
special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"]) |
|
special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"]) |
|
|
|
special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"]) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def _set_vocab_sentencepiece(self): |
|
from sentencepiece import SentencePieceProcessor |
|
|
|
tokenizer_path = self.dir_model / 'tokenizer.model' |
|
|
|
tokens: list[bytes] = [] |
|
scores: list[float] = [] |
|
toktypes: list[int] = [] |
|
|
|
if not tokenizer_path.is_file(): |
|
raise FileNotFoundError(f"File not found: {tokenizer_path}") |
|
|
|
tokenizer = SentencePieceProcessor(str(tokenizer_path)) |
|
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) |
|
|
|
for token_id in range(tokenizer.vocab_size()): |
|
piece = tokenizer.id_to_piece(token_id) |
|
text = piece.encode("utf-8") |
|
score = tokenizer.get_score(token_id) |
|
|
|
toktype = SentencePieceTokenTypes.NORMAL |
|
if tokenizer.is_unknown(token_id): |
|
toktype = SentencePieceTokenTypes.UNKNOWN |
|
elif tokenizer.is_control(token_id): |
|
toktype = SentencePieceTokenTypes.CONTROL |
|
elif tokenizer.is_unused(token_id): |
|
toktype = SentencePieceTokenTypes.UNUSED |
|
elif tokenizer.is_byte(token_id): |
|
toktype = SentencePieceTokenTypes.BYTE |
|
|
|
tokens.append(text) |
|
scores.append(score) |
|
toktypes.append(toktype) |
|
|
|
added_tokens_file = self.dir_model / 'added_tokens.json' |
|
if added_tokens_file.is_file(): |
|
with open(added_tokens_file, "r", encoding="utf-8") as f: |
|
added_tokens_json = json.load(f) |
|
|
|
for key in added_tokens_json: |
|
key = key.encode("utf-8") |
|
if key not in tokens: |
|
tokens.append(key) |
|
scores.append(-1000.0) |
|
toktypes.append(SentencePieceTokenTypes.USER_DEFINED) |
|
|
|
if vocab_size > len(tokens): |
|
pad_count = vocab_size - len(tokens) |
|
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") |
|
for i in range(1, pad_count + 1): |
|
tokens.append(f"[PAD{i}]") |
|
scores.append(-1000.0) |
|
toktypes.append(SentencePieceTokenTypes.UNUSED) |
|
|
|
assert len(tokens) == vocab_size |
|
|
|
self.gguf_writer.add_tokenizer_model("llama") |
|
self.gguf_writer.add_tokenizer_pre("default") |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_scores(scores) |
|
self.gguf_writer.add_token_types(toktypes) |
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def _set_vocab_llama_hf(self): |
|
vocab = LlamaHfVocab(self.dir_model) |
|
tokens = [] |
|
scores = [] |
|
toktypes = [] |
|
|
|
for text, score, toktype in vocab.all_tokens(): |
|
tokens.append(text) |
|
scores.append(score) |
|
toktypes.append(toktype) |
|
|
|
assert len(tokens) == vocab.vocab_size |
|
|
|
self.gguf_writer.add_tokenizer_model("llama") |
|
self.gguf_writer.add_tokenizer_pre("default") |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_scores(scores) |
|
self.gguf_writer.add_token_types(toktypes) |
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
|
|
@Model.register("GPTNeoXForCausalLM") |
|
class GPTNeoXModel(Model): |
|
model_arch = gguf.MODEL_ARCH.GPTNEOX |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.hparams["num_hidden_layers"] |
|
|
|
self.gguf_writer.add_name(self.dir_model.name) |
|
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) |
|
self.gguf_writer.add_rope_dimension_count( |
|
int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])), |
|
) |
|
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) |
|
self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True)) |
|
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"]) |
|
|
|
|
|
@Model.register("BloomForCausalLM") |
|
class BloomModel(Model): |
|
model_arch = gguf.MODEL_ARCH.BLOOM |
|
|
|
def set_gguf_parameters(self): |
|
self.gguf_writer.add_name("Bloom") |
|
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) |
|
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) |
|
self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed)) |
|
self.gguf_writer.add_embedding_length(n_embed) |
|
self.gguf_writer.add_feed_forward_length(4 * n_embed) |
|
self.gguf_writer.add_block_count(self.hparams["n_layer"]) |
|
self.gguf_writer.add_head_count(n_head) |
|
self.gguf_writer.add_head_count_kv(n_head) |
|
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
def write_tensors(self): |
|
block_count = self.hparams["n_layer"] |
|
tensors = dict(self.get_tensors()) |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
has_lm_head = True |
|
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) |
|
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) |
|
|
|
for name, data_torch in tensors.items(): |
|
if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys(): |
|
has_lm_head = False |
|
|
|
name = re.sub(r'transformer\.', '', name) |
|
|
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
data = data_torch.squeeze().numpy() |
|
|
|
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name): |
|
|
|
|
|
|
|
qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed)) |
|
data = np.concatenate( |
|
( |
|
qkv_weights[:, 0, :, :].reshape((-1, n_embed)), |
|
qkv_weights[:, 1, :, :].reshape((-1, n_embed)), |
|
qkv_weights[:, 2, :, :].reshape((-1, n_embed)), |
|
), |
|
axis=0, |
|
) |
|
logger.info("re-format attention.linear_qkv.weight") |
|
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name): |
|
qkv_bias = data.reshape((n_head, 3, n_embed // n_head)) |
|
data = np.concatenate( |
|
( |
|
qkv_bias[:, 0, :].reshape((n_embed,)), |
|
qkv_bias[:, 1, :].reshape((n_embed,)), |
|
qkv_bias[:, 2, :].reshape((n_embed,)), |
|
), |
|
axis=0, |
|
) |
|
logger.info("re-format attention.linear_qkv.bias") |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.info(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
if not has_lm_head and name == "word_embeddings.weight": |
|
self.gguf_writer.add_tensor("output.weight", data) |
|
logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}") |
|
|
|
|
|
@Model.register("MPTForCausalLM") |
|
class MPTModel(Model): |
|
model_arch = gguf.MODEL_ARCH.MPT |
|
|
|
def set_vocab(self): |
|
try: |
|
self._set_vocab_gpt2() |
|
except Exception: |
|
|
|
self._set_vocab_sentencepiece() |
|
self.gguf_writer.add_add_bos_token(False) |
|
self.gguf_writer.add_pad_token_id(3) |
|
self.gguf_writer.add_eos_token_id(1) |
|
self.gguf_writer.add_unk_token_id(0) |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.hparams["n_layers"] |
|
self.gguf_writer.add_name(self.dir_model.name) |
|
self.gguf_writer.add_context_length(self.hparams["max_seq_len"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["d_model"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"]) |
|
self.gguf_writer.add_head_count(self.hparams["n_heads"]) |
|
if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"): |
|
self.gguf_writer.add_head_count_kv(kv_n_heads) |
|
self.gguf_writer.add_layer_norm_eps(1e-5) |
|
if self.hparams["attn_config"]["clip_qkv"] is not None: |
|
self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"]) |
|
if self.hparams["attn_config"]["alibi"]: |
|
self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"]) |
|
else: |
|
self.gguf_writer.add_max_alibi_bias(0.0) |
|
|
|
def write_tensors(self): |
|
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers")) |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
for name, data_torch in self.get_tensors(): |
|
|
|
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")): |
|
continue |
|
|
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
data = data_torch.squeeze().numpy() |
|
|
|
|
|
if "scales" in name: |
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales")) |
|
if new_name is not None: |
|
new_name = new_name.replace("scales", "act.scales") |
|
else: |
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
|
|
@Model.register("OrionForCausalLM") |
|
class OrionModel(Model): |
|
model_arch = gguf.MODEL_ARCH.ORION |
|
|
|
def set_vocab(self): |
|
self._set_vocab_sentencepiece() |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.hparams["num_hidden_layers"] |
|
head_count = self.hparams["num_attention_heads"] |
|
head_count_kv = self.hparams.get("num_key_value_heads", head_count) |
|
hf_repo = self.hparams.get("_name_or_path", "") |
|
|
|
ctx_length = 0 |
|
if "max_sequence_length" in self.hparams: |
|
ctx_length = self.hparams["max_sequence_length"] |
|
elif "max_position_embeddings" in self.hparams: |
|
ctx_length = self.hparams["max_position_embeddings"] |
|
elif "model_max_length" in self.hparams: |
|
ctx_length = self.hparams["model_max_length"] |
|
else: |
|
raise ValueError("gguf: can not find ctx length parameter.") |
|
|
|
self.gguf_writer.add_file_type(self.ftype) |
|
self.gguf_writer.add_name(self.dir_model.name) |
|
self.gguf_writer.add_source_hf_repo(hf_repo) |
|
self.gguf_writer.add_tensor_data_layout("Meta AI original pth") |
|
self.gguf_writer.add_context_length(ctx_length) |
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) |
|
self.gguf_writer.add_head_count(head_count) |
|
self.gguf_writer.add_head_count_kv(head_count_kv) |
|
|
|
|
|
self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"]) |
|
|
|
def write_tensors(self): |
|
|
|
model_kv = dict(self.get_tensors()) |
|
block_count = self.hparams["num_hidden_layers"] |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
|
|
for name, data_torch in model_kv.items(): |
|
|
|
if name.endswith(".rotary_emb.inv_freq"): |
|
continue |
|
|
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
data = data_torch.squeeze().numpy() |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
|
|
@Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM") |
|
class BaichuanModel(Model): |
|
model_arch = gguf.MODEL_ARCH.BAICHUAN |
|
|
|
def set_vocab(self): |
|
self._set_vocab_sentencepiece() |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.hparams["num_hidden_layers"] |
|
head_count = self.hparams["num_attention_heads"] |
|
head_count_kv = self.hparams.get("num_key_value_heads", head_count) |
|
hf_repo = self.hparams.get("_name_or_path", "") |
|
|
|
ctx_length = 0 |
|
if "max_sequence_length" in self.hparams: |
|
ctx_length = self.hparams["max_sequence_length"] |
|
elif "max_position_embeddings" in self.hparams: |
|
ctx_length = self.hparams["max_position_embeddings"] |
|
elif "model_max_length" in self.hparams: |
|
ctx_length = self.hparams["model_max_length"] |
|
else: |
|
raise ValueError("gguf: can not find ctx length parameter.") |
|
|
|
self.gguf_writer.add_name(self.dir_model.name) |
|
self.gguf_writer.add_source_hf_repo(hf_repo) |
|
self.gguf_writer.add_tensor_data_layout("Meta AI original pth") |
|
self.gguf_writer.add_context_length(ctx_length) |
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) |
|
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) |
|
self.gguf_writer.add_head_count(head_count) |
|
self.gguf_writer.add_head_count_kv(head_count_kv) |
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) |
|
|
|
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: |
|
if self.hparams["rope_scaling"].get("type") == "linear": |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) |
|
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) |
|
|
|
def write_tensors(self): |
|
|
|
model_kv = dict(self.get_tensors()) |
|
block_count = self.hparams["num_hidden_layers"] |
|
head_count = self.hparams["num_attention_heads"] |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
head_count_kv = self.hparams.get("num_key_value_heads", head_count) |
|
|
|
for i in range(block_count): |
|
if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None: |
|
logger.info(f"Unpacking and permuting layer {i}") |
|
model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \ |
|
self._reverse_hf_permute_part(w, 0, head_count, head_count) |
|
model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \ |
|
self._reverse_hf_permute_part(w, 1, head_count, head_count_kv) |
|
model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \ |
|
self._reverse_hf_part(w, 2) |
|
del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"] |
|
|
|
for name, data_torch in model_kv.items(): |
|
|
|
if name.endswith(".rotary_emb.inv_freq"): |
|
continue |
|
|
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
data = data_torch.squeeze().numpy() |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: |
|
if n_kv_head is not None and n_head != n_kv_head: |
|
n_head //= n_kv_head |
|
|
|
return ( |
|
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) |
|
.swapaxes(1, 2) |
|
.reshape(weights.shape) |
|
) |
|
|
|
def _reverse_hf_permute_part( |
|
self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None, |
|
) -> Tensor: |
|
r = weights.shape[0] // 3 |
|
return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv) |
|
|
|
def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor: |
|
r = weights.shape[0] // 3 |
|
return weights[r * n_part:r * n_part + r, ...] |
|
|
|
|
|
@Model.register("XverseForCausalLM") |
|
class XverseModel(Model): |
|
model_arch = gguf.MODEL_ARCH.XVERSE |
|
|
|
def set_vocab(self): |
|
assert (self.dir_model / "tokenizer.json").is_file() |
|
dir_model = self.dir_model |
|
hparams = self.hparams |
|
|
|
tokens: list[bytearray] = [] |
|
toktypes: list[int] = [] |
|
|
|
from transformers import AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(dir_model) |
|
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) |
|
assert max(tokenizer.vocab.values()) < vocab_size |
|
|
|
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()} |
|
added_vocab = tokenizer.get_added_vocab() |
|
|
|
for token_id in range(vocab_size): |
|
token_text = reverse_vocab[token_id].encode('utf-8') |
|
|
|
if token_text == b"\x00": |
|
toktype = gguf.TokenType.BYTE |
|
token_text = f"<{token_text}>".encode('utf-8') |
|
elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text): |
|
toktype = gguf.TokenType.BYTE |
|
elif reverse_vocab[token_id] in added_vocab: |
|
if tokenizer.added_tokens_decoder[token_id].special: |
|
toktype = gguf.TokenType.CONTROL |
|
else: |
|
toktype = gguf.TokenType.USER_DEFINED |
|
else: |
|
toktype = gguf.TokenType.NORMAL |
|
|
|
tokens.append(token_text) |
|
toktypes.append(toktype) |
|
|
|
self.gguf_writer.add_tokenizer_model("llama") |
|
self.gguf_writer.add_tokenizer_pre("default") |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_types(toktypes) |
|
|
|
special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens)) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.hparams["num_hidden_layers"] |
|
head_count = self.hparams["num_attention_heads"] |
|
head_count_kv = self.hparams.get("num_key_value_heads", head_count) |
|
hf_repo = self.hparams.get("_name_or_path", "") |
|
|
|
ctx_length = 0 |
|
if "max_sequence_length" in self.hparams: |
|
ctx_length = self.hparams["max_sequence_length"] |
|
elif "max_position_embeddings" in self.hparams: |
|
ctx_length = self.hparams["max_position_embeddings"] |
|
elif "model_max_length" in self.hparams: |
|
ctx_length = self.hparams["model_max_length"] |
|
else: |
|
raise ValueError("gguf: can not find ctx length parameter.") |
|
|
|
self.gguf_writer.add_name(self.dir_model.name) |
|
self.gguf_writer.add_source_hf_repo(hf_repo) |
|
self.gguf_writer.add_tensor_data_layout("Meta AI original pth") |
|
self.gguf_writer.add_context_length(ctx_length) |
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) |
|
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) |
|
self.gguf_writer.add_head_count(head_count) |
|
self.gguf_writer.add_head_count_kv(head_count_kv) |
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) |
|
|
|
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: |
|
if self.hparams["rope_scaling"].get("type") == "linear": |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) |
|
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) |
|
|
|
def write_tensors(self): |
|
|
|
model_kv = dict(self.get_tensors()) |
|
block_count = self.hparams["num_hidden_layers"] |
|
head_count = self.hparams["num_attention_heads"] |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
head_count_kv = self.hparams.get("num_key_value_heads", head_count) |
|
|
|
for name, data_torch in model_kv.items(): |
|
|
|
if name.endswith(".rotary_emb.inv_freq"): |
|
continue |
|
|
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
|
|
if name.endswith(("q_proj.weight")): |
|
data_torch = self._reverse_hf_permute(data_torch, head_count, head_count) |
|
if name.endswith(("k_proj.weight")): |
|
data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv) |
|
|
|
data = data_torch.squeeze().numpy() |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: |
|
if n_kv_head is not None and n_head != n_kv_head: |
|
n_head //= n_kv_head |
|
|
|
return ( |
|
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) |
|
.swapaxes(1, 2) |
|
.reshape(weights.shape) |
|
) |
|
|
|
|
|
@Model.register("FalconForCausalLM", "RWForCausalLM") |
|
class FalconModel(Model): |
|
model_arch = gguf.MODEL_ARCH.FALCON |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.hparams.get("num_hidden_layers") |
|
if block_count is None: |
|
block_count = self.hparams["n_layer"] |
|
|
|
n_head = self.hparams.get("num_attention_heads") |
|
if n_head is None: |
|
n_head = self.hparams["n_head"] |
|
|
|
n_head_kv = self.hparams.get("num_kv_heads") |
|
if n_head_kv is None: |
|
n_head_kv = self.hparams.get("n_head_kv", 1) |
|
|
|
self.gguf_writer.add_name("Falcon") |
|
self.gguf_writer.add_context_length(2048) |
|
self.gguf_writer.add_tensor_data_layout("jploski") |
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) |
|
self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_head_count(n_head) |
|
self.gguf_writer.add_head_count_kv(n_head_kv) |
|
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
def write_tensors(self): |
|
block_count = self.hparams.get("num_hidden_layers") |
|
if block_count is None: |
|
block_count = self.hparams["n_layer"] |
|
|
|
n_head = self.hparams.get("num_attention_heads") |
|
if n_head is None: |
|
n_head = self.hparams["n_head"] |
|
|
|
n_head_kv = self.hparams.get("num_kv_heads") |
|
if n_head_kv is None: |
|
n_head_kv = self.hparams.get("n_head_kv", 1) |
|
|
|
head_dim = self.hparams["hidden_size"] // n_head |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
|
|
for name, data_torch in self.get_tensors(): |
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if "query_key_value" in name: |
|
qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head) |
|
q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head) |
|
k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head) |
|
v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head) |
|
data_torch = torch.cat((q, k, v)).reshape_as(data_torch) |
|
|
|
data = data_torch.squeeze().numpy() |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
|
|
@Model.register("GPTBigCodeForCausalLM") |
|
class StarCoderModel(Model): |
|
model_arch = gguf.MODEL_ARCH.STARCODER |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.hparams["n_layer"] |
|
|
|
self.gguf_writer.add_name("StarCoder") |
|
self.gguf_writer.add_context_length(self.hparams["n_positions"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) |
|
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_head_count(self.hparams["n_head"]) |
|
self.gguf_writer.add_head_count_kv(1) |
|
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
|
|
@Model.register("GPTRefactForCausalLM") |
|
class RefactModel(Model): |
|
model_arch = gguf.MODEL_ARCH.REFACT |
|
|
|
def set_gguf_parameters(self): |
|
hidden_dim = self.hparams["n_embd"] |
|
inner_dim = 4 * hidden_dim |
|
hidden_dim = int(2 * inner_dim / 3) |
|
multiple_of = 256 |
|
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) |
|
|
|
block_count = self.hparams["n_layer"] |
|
|
|
self.gguf_writer.add_name("Refact") |
|
|
|
self.gguf_writer.add_context_length(self.hparams["n_positions"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) |
|
|
|
self.gguf_writer.add_feed_forward_length(ff_dim) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_head_count(self.hparams["n_head"]) |
|
self.gguf_writer.add_head_count_kv(1) |
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
def write_tensors(self): |
|
hidden_dim = self.hparams["n_embd"] |
|
inner_dim = 4 * hidden_dim |
|
hidden_dim = int(2 * inner_dim / 3) |
|
multiple_of = 256 |
|
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) |
|
n_head = self.hparams["n_head"] |
|
n_head_kv = 1 |
|
head_dim = self.hparams["n_embd"] // n_head |
|
block_count = self.hparams["n_layer"] |
|
|
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
|
|
tensors = dict(self.get_tensors()) |
|
for i in range(block_count): |
|
if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None: |
|
tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim] |
|
tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:] |
|
del tensors[f"transformer.h.{i}.attn.kv.weight"] |
|
if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None: |
|
tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w |
|
del tensors[f"transformer.h.{i}.attn.q.weight"] |
|
if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None: |
|
tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim] |
|
tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:] |
|
del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"] |
|
|
|
for name, data_torch in tensors.items(): |
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
data = data_torch.squeeze().numpy() |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight",)) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
|
|
@Model.register("PersimmonForCausalLM") |
|
class PersimmonModel(Model): |
|
model_arch = gguf.MODEL_ARCH.PERSIMMON |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers")) |
|
head_count = self.hparams["num_attention_heads"] |
|
head_count_kv = head_count |
|
hidden_size = self.hparams["hidden_size"] |
|
|
|
self.gguf_writer.add_name('persimmon-8b-chat') |
|
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) |
|
self.gguf_writer.add_embedding_length(hidden_size) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) |
|
|
|
|
|
|
|
|
|
|
|
self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2) |
|
|
|
self.gguf_writer.add_head_count(head_count) |
|
self.gguf_writer.add_head_count_kv(head_count_kv) |
|
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"]) |
|
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"]) |
|
|
|
def set_vocab(self): |
|
self._set_vocab_sentencepiece() |
|
|
|
|
|
|
|
def write_tensors(self): |
|
block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers")) |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
|
|
for name, data_torch in self.get_tensors(): |
|
if name.endswith(".self_attention.rotary_emb.inv_freq"): |
|
continue |
|
old_dtype = data_torch.dtype |
|
|
|
data = data_torch.to(torch.float32).squeeze().numpy() |
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
n_dims = len(data.shape) |
|
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
|
|
@Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM") |
|
class StableLMModel(Model): |
|
model_arch = gguf.MODEL_ARCH.STABLELM |
|
|
|
def set_vocab(self): |
|
if (self.dir_model / "tokenizer.json").is_file(): |
|
self._set_vocab_gpt2() |
|
else: |
|
|
|
self._set_vocab_qwen() |
|
|
|
def set_gguf_parameters(self): |
|
hparams = self.hparams |
|
block_count = hparams["num_hidden_layers"] |
|
|
|
self.gguf_writer.add_name(self.dir_model.name) |
|
self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) |
|
self.gguf_writer.add_embedding_length(hparams["hidden_size"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) |
|
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"]) |
|
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"]))) |
|
self.gguf_writer.add_head_count(hparams["num_attention_heads"]) |
|
self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"]) |
|
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True) |
|
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"])) |
|
|
|
def write_tensors(self): |
|
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
n_head = self.hparams.get("num_attention_heads") |
|
n_kv_head = self.hparams.get("num_key_value_heads") |
|
q_norms = dict() |
|
k_norms = dict() |
|
for name, data_torch in self.get_tensors(): |
|
|
|
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")): |
|
continue |
|
|
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
data = data_torch.squeeze().numpy() |
|
n_dims = len(data.shape) |
|
if name.find("q_layernorm.norms") != -1: |
|
q_norms[name] = data |
|
if len(q_norms) >= (block_count * n_head): |
|
self._stack_qk_norm(block_count, name, tensor_map, n_head, q_norms, n_dims, layer_name="q_layernorm") |
|
continue |
|
if name.find("k_layernorm.norms") != -1: |
|
k_norms[name] = data |
|
if len(k_norms) >= (block_count * n_kv_head): |
|
self._stack_qk_norm(block_count, name, tensor_map, n_kv_head, k_norms, n_dims, layer_name="k_layernorm") |
|
continue |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")): |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.debug(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
def _stack_qk_norm(self, block_count, name, tensor_map, n_head, norms, n_dims, layer_name="q_layernorm"): |
|
for bid in range(block_count): |
|
datas = [] |
|
for xid in range(n_head): |
|
ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight" |
|
datas.append(norms[ename]) |
|
del norms[ename] |
|
data = np.stack(datas, axis=0) |
|
data_dtype = data.dtype |
|
merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight" |
|
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")): |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
|
|
@Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM") |
|
class LlamaModel(Model): |
|
model_arch = gguf.MODEL_ARCH.LLAMA |
|
|
|
def set_vocab(self): |
|
try: |
|
self. _set_vocab_sentencepiece() |
|
except FileNotFoundError: |
|
try: |
|
self._set_vocab_llama_hf() |
|
except (FileNotFoundError, TypeError): |
|
|
|
self._set_vocab_gpt2() |
|
|
|
|
|
if self.hparams.get("vocab_size", 32000) == 32016: |
|
special_vocab = gguf.SpecialVocab( |
|
self.dir_model, load_merges=False, |
|
special_token_types = ['prefix', 'suffix', 'middle', 'eot'] |
|
) |
|
special_vocab._set_special_token("prefix", 32007) |
|
special_vocab._set_special_token("suffix", 32008) |
|
special_vocab._set_special_token("middle", 32009) |
|
special_vocab._set_special_token("eot", 32010) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
hparams = self.hparams |
|
self.gguf_writer.add_vocab_size(hparams["vocab_size"]) |
|
self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"]) |
|
|
|
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: |
|
if self.hparams["rope_scaling"].get("type") == "linear": |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) |
|
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) |
|
|
|
|
|
def write_tensors(self): |
|
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
n_head = self.hparams.get("num_attention_heads") |
|
n_kv_head = self.hparams.get("num_key_value_heads") |
|
n_experts = self.hparams.get("num_local_experts") |
|
experts = dict() |
|
for name, data_torch in self.get_tensors(): |
|
|
|
if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")): |
|
continue |
|
|
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
data = data_torch.numpy() |
|
|
|
if name.endswith("q_proj.weight"): |
|
data = permute(data, n_head, n_head) |
|
if name.endswith("k_proj.weight"): |
|
data = permute(data, n_head, n_kv_head) |
|
|
|
data = data.squeeze() |
|
|
|
|
|
if name.find("block_sparse_moe.experts") != -1: |
|
experts[name] = data |
|
if len(experts) >= n_experts: |
|
|
|
for bid in range(block_count): |
|
for wid in range(1, 4): |
|
full = True |
|
for xid in range(n_experts): |
|
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight" |
|
if ename not in experts: |
|
full = False |
|
break |
|
if not full: |
|
continue |
|
|
|
datas = [] |
|
for xid in range(n_experts): |
|
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight" |
|
datas.append(experts[ename]) |
|
del experts[ename] |
|
|
|
data = np.stack(datas, axis=0) |
|
data_dtype = data.dtype |
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
if self.ftype == 1 and data_dtype == np.float32: |
|
data = data.astype(np.float16) |
|
|
|
merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight" |
|
|
|
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
continue |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
if len(experts) > 0: |
|
raise ValueError(f"Unprocessed experts: {experts.keys()}") |
|
|
|
|
|
@Model.register("GrokForCausalLM") |
|
class GrokModel(Model): |
|
model_arch = gguf.MODEL_ARCH.GROK |
|
|
|
def set_vocab(self): |
|
self._set_vocab_sentencepiece() |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
self.gguf_writer.add_name("Grok") |
|
|
|
def write_tensors(self): |
|
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
n_experts = self.hparams.get("num_local_experts") |
|
experts = dict() |
|
for name, data_torch in self.get_tensors(): |
|
|
|
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")): |
|
continue |
|
|
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
data = data_torch.squeeze().numpy() |
|
|
|
|
|
if name.find(".moe.") != -1: |
|
experts[name] = data |
|
if len(experts) >= n_experts: |
|
|
|
for bid in range(block_count): |
|
for wid in ["linear", "linear_1", "linear_v"]: |
|
full = True |
|
for xid in range(n_experts): |
|
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight" |
|
if ename not in experts: |
|
full = False |
|
break |
|
if not full: |
|
continue |
|
|
|
datas = [] |
|
for xid in range(n_experts): |
|
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight" |
|
datas.append(experts[ename]) |
|
del experts[ename] |
|
|
|
data = np.stack(datas, axis=0) |
|
data_dtype = data.dtype |
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
if self.ftype == 1 and data_dtype == np.float32: |
|
data = data.astype(np.float16) |
|
|
|
merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight" |
|
|
|
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
continue |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
|
|
@Model.register("DbrxForCausalLM") |
|
class DbrxModel(Model): |
|
model_arch = gguf.MODEL_ARCH.DBRX |
|
|
|
def set_gguf_parameters(self): |
|
ffn_config = self.hparams["ffn_config"] |
|
attn_config = self.hparams["attn_config"] |
|
self.gguf_writer.add_name(self.hparams["model_type"]) |
|
self.gguf_writer.add_block_count(self.hparams["n_layers"]) |
|
|
|
self.gguf_writer.add_context_length(self.hparams["max_seq_len"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["d_model"]) |
|
self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"]) |
|
|
|
self.gguf_writer.add_head_count(self.hparams["n_heads"]) |
|
self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"]) |
|
|
|
self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"]) |
|
|
|
self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"]) |
|
self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"]) |
|
|
|
self.gguf_writer.add_layer_norm_eps(1e-5) |
|
|
|
self.gguf_writer.add_file_type(self.ftype) |
|
logger.info(f"gguf: file type = {self.ftype}") |
|
|
|
def write_tensors(self): |
|
block_count = self.hparams.get("n_layers") |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
for name, data_torch in self.get_tensors(): |
|
n_expert = self.hparams["ffn_config"]["moe_num_experts"] |
|
n_ff = self.hparams["ffn_config"]["ffn_hidden_size"] |
|
n_embd = self.hparams["d_model"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
exp_tensor_names = {"ffn.experts.mlp.w1": None, |
|
"ffn.experts.mlp.w2": (0, 2, 1), |
|
"ffn.experts.mlp.v1": None} |
|
experts = False |
|
for exp_tensor_name in exp_tensor_names.keys(): |
|
if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1: |
|
experts = True |
|
data_torch = data_torch.view(n_expert, n_ff, n_embd) |
|
if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None: |
|
data_torch = data_torch.permute(*permute_tensor) |
|
break |
|
|
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
data = data_torch.squeeze().numpy() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
new_name = tensor_map.get_name(name if not experts else name + ".weight", try_suffixes=(".weight",)) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
|
|
if data_dtype != np.float32 and n_dims == 1: |
|
raise ValueError(f"Can not map tensor {name!r}: all 1D tensors must be F32") |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and n_dims > 1: |
|
data = data.astype(np.float16) |
|
|
|
logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
|
|
@Model.register("MiniCPMForCausalLM") |
|
class MiniCPMModel(Model): |
|
model_arch = gguf.MODEL_ARCH.MINICPM |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.hparams["num_hidden_layers"] |
|
self.gguf_writer.add_name("MiniCPM") |
|
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) |
|
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) |
|
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) |
|
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"]) |
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
def set_vocab(self): |
|
self._set_vocab_llama_hf() |
|
|
|
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: |
|
if n_kv_head is not None and n_head != n_kv_head: |
|
n_head //= n_kv_head |
|
|
|
return ( |
|
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) |
|
.swapaxes(1, 2) |
|
.reshape(weights.shape) |
|
) |
|
|
|
def write_tensors(self): |
|
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
n_head = self.hparams.get("num_attention_heads") |
|
n_kv_head = self.hparams.get("num_key_value_heads") |
|
for name, data_torch in self.get_tensors(): |
|
|
|
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")): |
|
continue |
|
|
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
|
|
if name.endswith(("q_proj.weight")): |
|
data_torch = self._reverse_hf_permute(data_torch, n_head, n_head) |
|
if name.endswith(("k_proj.weight")): |
|
data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head) |
|
|
|
data = data_torch.squeeze().numpy() |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
|
|
@Model.register("QWenLMHeadModel") |
|
class QwenModel(Model): |
|
model_arch = gguf.MODEL_ARCH.QWEN |
|
|
|
@staticmethod |
|
def token_bytes_to_string(b): |
|
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode |
|
byte_encoder = bytes_to_unicode() |
|
return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')]) |
|
|
|
@staticmethod |
|
def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]: |
|
parts = [bytes([b]) for b in token] |
|
while True: |
|
min_idx = None |
|
min_rank = None |
|
for i, pair in enumerate(zip(parts[:-1], parts[1:])): |
|
rank = mergeable_ranks.get(pair[0] + pair[1]) |
|
if rank is not None and (min_rank is None or rank < min_rank): |
|
min_idx = i |
|
min_rank = rank |
|
if min_rank is None or (max_rank is not None and min_rank >= max_rank): |
|
break |
|
assert min_idx is not None |
|
parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:] |
|
return parts |
|
|
|
def set_vocab(self): |
|
self._set_vocab_qwen() |
|
|
|
def set_gguf_parameters(self): |
|
self.gguf_writer.add_name("Qwen") |
|
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) |
|
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) |
|
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) |
|
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"]) |
|
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) |
|
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) |
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) |
|
|
|
def write_tensors(self): |
|
block_count = self.hparams["num_hidden_layers"] |
|
model_kv = dict(self.get_tensors()) |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
for name, data_torch in model_kv.items(): |
|
|
|
if name.endswith(".rotary_emb.inv_freq"): |
|
continue |
|
|
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
data = data_torch.squeeze().numpy() |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
|
|
@Model.register("LlavaQwen2ForCausalLM") |
|
class Qwen2Model(Model): |
|
model_arch = gguf.MODEL_ARCH.QWEN2 |
|
|
|
def set_vocab(self): |
|
try: |
|
self._set_vocab_sentencepiece() |
|
except FileNotFoundError: |
|
self._set_vocab_gpt2() |
|
|
|
|
|
@Model.register("Qwen2MoeForCausalLM") |
|
class Qwen2MoeModel(Model): |
|
model_arch = gguf.MODEL_ARCH.QWEN2MOE |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
if (n_experts := self.hparams.get("num_experts")) is not None: |
|
self.gguf_writer.add_expert_count(n_experts) |
|
|
|
def write_tensors(self): |
|
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
n_experts = self.hparams.get("num_experts") |
|
experts = dict() |
|
for name, data_torch in self.get_tensors(): |
|
|
|
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")): |
|
continue |
|
|
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
data = data_torch.squeeze().numpy() |
|
|
|
|
|
if name.find("experts") != -1: |
|
experts[name] = data |
|
if len(experts) >= n_experts * 3: |
|
|
|
for bid in range(block_count): |
|
for w_name in ["down_proj", "gate_proj", "up_proj"]: |
|
full = True |
|
for xid in range(n_experts): |
|
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight" |
|
if ename not in experts: |
|
full = False |
|
break |
|
if not full: |
|
continue |
|
|
|
datas = [] |
|
for xid in range(n_experts): |
|
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight" |
|
datas.append(experts[ename]) |
|
del experts[ename] |
|
|
|
data = np.stack(datas, axis=0) |
|
data_dtype = data.dtype |
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
if self.ftype == 1 and data_dtype == np.float32: |
|
data = data.astype(np.float16) |
|
|
|
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight" |
|
|
|
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
continue |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")): |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
if len(experts) > 0: |
|
raise ValueError(f"Unprocessed experts: {experts.keys()}") |
|
|
|
|
|
@Model.register("GPT2LMHeadModel") |
|
class GPT2Model(Model): |
|
model_arch = gguf.MODEL_ARCH.GPT2 |
|
|
|
def set_gguf_parameters(self): |
|
self.gguf_writer.add_name(self.dir_model.name) |
|
self.gguf_writer.add_block_count(self.hparams["n_layer"]) |
|
self.gguf_writer.add_context_length(self.hparams["n_ctx"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) |
|
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) |
|
self.gguf_writer.add_head_count(self.hparams["n_head"]) |
|
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
def write_tensors(self): |
|
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
|
|
for name, data_torch in self.get_tensors(): |
|
|
|
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")): |
|
continue |
|
|
|
if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")): |
|
data_torch = data_torch.transpose(1, 0) |
|
|
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
data = data_torch.squeeze().numpy() |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
|
|
if new_name == "token_embd.weight": |
|
logger.info(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
self.gguf_writer.add_tensor("output.weight", data) |
|
|
|
|
|
@Model.register("PhiForCausalLM") |
|
class Phi2Model(Model): |
|
model_arch = gguf.MODEL_ARCH.PHI2 |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.find_hparam(["num_hidden_layers", "n_layer"]) |
|
|
|
rot_pct = self.find_hparam(["partial_rotary_factor"]) |
|
n_embd = self.find_hparam(["hidden_size", "n_embd"]) |
|
n_head = self.find_hparam(["num_attention_heads", "n_head"]) |
|
|
|
self.gguf_writer.add_name("Phi2") |
|
self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"])) |
|
|
|
self.gguf_writer.add_embedding_length(n_embd) |
|
self.gguf_writer.add_feed_forward_length(4 * n_embd) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_head_count(n_head) |
|
self.gguf_writer.add_head_count_kv(n_head) |
|
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"])) |
|
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
self.gguf_writer.add_add_bos_token(False) |
|
|
|
|
|
@Model.register("Phi3ForCausalLM") |
|
class Phi3MiniModel(Model): |
|
model_arch = gguf.MODEL_ARCH.PHI3 |
|
|
|
def set_vocab(self): |
|
from sentencepiece import SentencePieceProcessor |
|
|
|
tokenizer_path = self.dir_model / 'tokenizer.model' |
|
|
|
if not tokenizer_path.is_file(): |
|
raise ValueError(f'Error: Missing {tokenizer_path}') |
|
|
|
tokenizer = SentencePieceProcessor(str(tokenizer_path)) |
|
|
|
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) |
|
|
|
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] |
|
scores: list[float] = [-10000.0] * vocab_size |
|
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size |
|
|
|
for token_id in range(tokenizer.vocab_size()): |
|
|
|
piece = tokenizer.id_to_piece(token_id) |
|
text = piece.encode("utf-8") |
|
score = tokenizer.get_score(token_id) |
|
|
|
toktype = SentencePieceTokenTypes.NORMAL |
|
if tokenizer.is_unknown(token_id): |
|
toktype = SentencePieceTokenTypes.UNKNOWN |
|
elif tokenizer.is_control(token_id): |
|
toktype = SentencePieceTokenTypes.CONTROL |
|
elif tokenizer.is_unused(token_id): |
|
toktype = SentencePieceTokenTypes.UNUSED |
|
elif tokenizer.is_byte(token_id): |
|
toktype = SentencePieceTokenTypes.BYTE |
|
|
|
tokens[token_id] = text |
|
scores[token_id] = score |
|
toktypes[token_id] = toktype |
|
|
|
added_tokens_file = self.dir_model / 'added_tokens.json' |
|
if added_tokens_file.is_file(): |
|
with open(added_tokens_file, "r", encoding="utf-8") as f: |
|
added_tokens_json = json.load(f) |
|
|
|
for key in added_tokens_json: |
|
token_id = added_tokens_json[key] |
|
if (token_id >= vocab_size): |
|
logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') |
|
continue |
|
|
|
tokens[token_id] = key.encode("utf-8") |
|
scores[token_id] = -1000.0 |
|
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED |
|
|
|
self.gguf_writer.add_tokenizer_model("llama") |
|
self.gguf_writer.add_tokenizer_pre("default") |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_scores(scores) |
|
self.gguf_writer.add_token_types(toktypes) |
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.find_hparam(["num_hidden_layers", "n_layer"]) |
|
|
|
rot_pct = 1.0 |
|
n_embd = self.find_hparam(["hidden_size", "n_embd"]) |
|
n_head = self.find_hparam(["num_attention_heads", "n_head"]) |
|
rms_eps = self.find_hparam(["rms_norm_eps"]) |
|
|
|
self.gguf_writer.add_name("Phi3") |
|
self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"])) |
|
|
|
self.gguf_writer.add_embedding_length(n_embd) |
|
self.gguf_writer.add_feed_forward_length(8192) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_head_count(n_head) |
|
self.gguf_writer.add_head_count_kv(n_head) |
|
self.gguf_writer.add_layer_norm_rms_eps(rms_eps) |
|
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
|
|
@Model.register("PlamoForCausalLM") |
|
class PlamoModel(Model): |
|
model_arch = gguf.MODEL_ARCH.PLAMO |
|
|
|
def set_vocab(self): |
|
self._set_vocab_sentencepiece() |
|
|
|
def set_gguf_parameters(self): |
|
hparams = self.hparams |
|
block_count = hparams["num_hidden_layers"] |
|
|
|
self.gguf_writer.add_name("PLaMo") |
|
self.gguf_writer.add_context_length(4096) |
|
self.gguf_writer.add_embedding_length(hparams["hidden_size"]) |
|
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_head_count(hparams["num_attention_heads"]) |
|
self.gguf_writer.add_head_count_kv(5) |
|
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"]) |
|
|
|
def shuffle_attn_q_weight(self, data_torch): |
|
assert data_torch.size() == (5120, 5120) |
|
data_torch = data_torch.reshape(8, 5, 128, 5120) |
|
data_torch = torch.permute(data_torch, (1, 0, 2, 3)) |
|
data_torch = torch.reshape(data_torch, (5120, 5120)) |
|
return data_torch |
|
|
|
def shuffle_attn_output_weight(self, data_torch): |
|
assert data_torch.size() == (5120, 5120) |
|
data_torch = data_torch.reshape(5120, 8, 5, 128) |
|
data_torch = torch.permute(data_torch, (0, 2, 1, 3)) |
|
data_torch = torch.reshape(data_torch, (5120, 5120)) |
|
return data_torch |
|
|
|
def write_tensors(self): |
|
block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers")) |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
|
|
for name, data_torch in self.get_tensors(): |
|
if "self_attn.rotary_emb.inv_freq" in name: |
|
continue |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
|
|
if new_name.endswith("attn_q.weight"): |
|
data_torch = self.shuffle_attn_q_weight(data_torch) |
|
elif new_name.endswith("attn_output.weight"): |
|
data_torch = self.shuffle_attn_output_weight(data_torch) |
|
|
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
data = data_torch.squeeze().numpy() |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
|
|
@Model.register("CodeShellForCausalLM") |
|
class CodeShellModel(Model): |
|
model_arch = gguf.MODEL_ARCH.CODESHELL |
|
|
|
def set_gguf_parameters(self): |
|
block_count = self.hparams["n_layer"] |
|
|
|
self.gguf_writer.add_name("CodeShell") |
|
self.gguf_writer.add_context_length(self.hparams["n_positions"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) |
|
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_head_count(self.hparams["n_head"]) |
|
self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"]) |
|
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
self.gguf_writer.add_rope_freq_base(10000.0) |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) |
|
self.gguf_writer.add_rope_scaling_factor(1.0) |
|
|
|
def write_tensors(self): |
|
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
tensors = dict(self.get_tensors()) |
|
has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys() |
|
for name, data_torch in tensors.items(): |
|
|
|
if name.endswith((".attn.rotary_emb.inv_freq")): |
|
continue |
|
|
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
data = data_torch.squeeze().numpy() |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
if not has_lm_head and name == "transformer.wte.weight": |
|
self.gguf_writer.add_tensor("output.weight", data) |
|
logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}") |
|
|
|
|
|
@Model.register("InternLM2ForCausalLM") |
|
class InternLM2Model(Model): |
|
model_arch = gguf.MODEL_ARCH.INTERNLM2 |
|
|
|
def set_vocab(self): |
|
|
|
|
|
|
|
|
|
from sentencepiece import SentencePieceProcessor |
|
from sentencepiece import sentencepiece_model_pb2 as model |
|
|
|
tokenizer_path = self.dir_model / 'tokenizer.model' |
|
|
|
tokens: list[bytes] = [] |
|
scores: list[float] = [] |
|
toktypes: list[int] = [] |
|
|
|
if not tokenizer_path.is_file(): |
|
logger.error(f'Error: Missing {tokenizer_path}') |
|
sys.exit(1) |
|
|
|
sentencepiece_model = model.ModelProto() |
|
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) |
|
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix |
|
|
|
tokenizer = SentencePieceProcessor(str(tokenizer_path)) |
|
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) |
|
|
|
for token_id in range(vocab_size): |
|
piece = tokenizer.id_to_piece(token_id) |
|
text = piece.encode("utf-8") |
|
score = tokenizer.get_score(token_id) |
|
if text == b"\x00": |
|
|
|
|
|
logger.debug(f"InternLM2 convert token '{text}' to '🐉'!") |
|
text = "🐉" |
|
|
|
toktype = SentencePieceTokenTypes.NORMAL |
|
if tokenizer.is_unknown(token_id): |
|
toktype = SentencePieceTokenTypes.UNKNOWN |
|
elif tokenizer.is_control(token_id): |
|
toktype = SentencePieceTokenTypes.CONTROL |
|
elif tokenizer.is_unused(token_id): |
|
toktype = SentencePieceTokenTypes.UNUSED |
|
elif tokenizer.is_byte(token_id): |
|
toktype = SentencePieceTokenTypes.BYTE |
|
|
|
tokens.append(text) |
|
scores.append(score) |
|
toktypes.append(toktype) |
|
|
|
added_tokens_file = self.dir_model / 'added_tokens.json' |
|
if added_tokens_file.is_file(): |
|
with open(added_tokens_file, "r", encoding="utf-8") as f: |
|
added_tokens_json = json.load(f) |
|
|
|
for key in added_tokens_json: |
|
tokens.append(key.encode("utf-8")) |
|
scores.append(-1000.0) |
|
toktypes.append(SentencePieceTokenTypes.USER_DEFINED) |
|
|
|
self.gguf_writer.add_tokenizer_model("llama") |
|
self.gguf_writer.add_tokenizer_pre("default") |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_scores(scores) |
|
self.gguf_writer.add_token_types(toktypes) |
|
self.gguf_writer.add_add_space_prefix(add_prefix) |
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) |
|
old_eos = special_vocab.special_token_ids["eos"] |
|
if "chat" in os.path.basename(self.dir_model.absolute()): |
|
|
|
|
|
|
|
special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer) |
|
logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \ |
|
in chat mode so that the conversation can end normally.") |
|
|
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def _try_get_sft_eos(self, tokenizer): |
|
unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]') |
|
im_end_list = tokenizer.encode('<|im_end|>') |
|
assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1) |
|
if len(unused_145_list) == 1: |
|
eos_token = unused_145_list[0] |
|
if len(im_end_list) == 1: |
|
eos_token = im_end_list[0] |
|
return eos_token |
|
|
|
def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int): |
|
if n_head_kv is not None and n_head != n_head_kv: |
|
n_head = n_head_kv |
|
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) |
|
.swapaxes(1, 2) |
|
.reshape(weights.shape)) |
|
|
|
def set_gguf_parameters(self): |
|
self.gguf_writer.add_name("InternLM2") |
|
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) |
|
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"]) |
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) |
|
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) |
|
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"]) |
|
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) |
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) |
|
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"]) |
|
|
|
def post_write_tensors(self, tensor_map, name, data_torch): |
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
data = data_torch.squeeze().numpy() |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
def write_tensors(self): |
|
from einops import rearrange |
|
|
|
num_heads = self.hparams.get("num_attention_heads") |
|
num_kv_heads = self.hparams.get("num_key_value_heads") |
|
hidden_size = self.hparams.get("hidden_size") |
|
q_per_kv = num_heads // num_kv_heads |
|
head_dim = hidden_size // num_heads |
|
num_groups = num_heads // q_per_kv |
|
|
|
block_count = self.hparams["num_hidden_layers"] |
|
model_kv = dict(self.get_tensors()) |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv" |
|
for name, data_torch in model_kv.items(): |
|
|
|
if name.endswith(".rotary_emb.inv_freq"): |
|
continue |
|
|
|
if re.match(qkv_pattern, name): |
|
bid = re.findall(qkv_pattern, name)[0] |
|
qkv = data_torch |
|
qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim) |
|
q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :] |
|
|
|
q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads) |
|
k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads) |
|
v = rearrange(v, " o g n i -> o (g n i)").T |
|
self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q) |
|
self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k) |
|
self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v) |
|
else: |
|
self.post_write_tensors(tensor_map, name, data_torch) |
|
|
|
|
|
@Model.register("BertModel", "CamembertModel") |
|
class BertModel(Model): |
|
model_arch = gguf.MODEL_ARCH.BERT |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.vocab_size = None |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
self.gguf_writer.add_causal_attention(False) |
|
|
|
|
|
pooling_path = None |
|
module_path = self.dir_model / "modules.json" |
|
if module_path.is_file(): |
|
with open(module_path, encoding="utf-8") as f: |
|
modules = json.load(f) |
|
for mod in modules: |
|
if mod["type"] == "sentence_transformers.models.Pooling": |
|
pooling_path = mod["path"] |
|
break |
|
|
|
|
|
if pooling_path is not None: |
|
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f: |
|
pooling = json.load(f) |
|
if pooling["pooling_mode_mean_tokens"]: |
|
pooling_type = gguf.PoolingType.MEAN |
|
elif pooling["pooling_mode_cls_token"]: |
|
pooling_type = gguf.PoolingType.CLS |
|
else: |
|
raise NotImplementedError("Only MEAN and CLS pooling types supported") |
|
self.gguf_writer.add_pooling_type(pooling_type) |
|
|
|
def set_vocab(self): |
|
tokens, toktypes, tokpre = self.get_vocab_base() |
|
self.vocab_size = len(tokens) |
|
|
|
|
|
|
|
self.gguf_writer.add_token_type_count(2) |
|
|
|
|
|
def phantom(tok): |
|
if tok.startswith("[") and tok.endswith("]"): |
|
return tok |
|
if tok.startswith("##"): |
|
return tok[2:] |
|
return "\u2581" + tok |
|
tokens = list(map(phantom, tokens)) |
|
|
|
|
|
self.gguf_writer.add_tokenizer_model("bert") |
|
self.gguf_writer.add_tokenizer_pre(tokpre) |
|
self.gguf_writer.add_token_list(tokens) |
|
self.gguf_writer.add_token_types(toktypes) |
|
|
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def write_tensors(self): |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count) |
|
tensors = dict(self.get_tensors()) |
|
for name, data_torch in tensors.items(): |
|
|
|
if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"): |
|
continue |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
data = data_torch.squeeze().numpy() |
|
n_dims = len(data.shape) |
|
new_dtype: type[np.floating[Any]] |
|
|
|
if ( |
|
self.ftype == 1 and name.endswith(".weight") and n_dims == 2 |
|
and name != "embeddings.token_type_embeddings.weight" |
|
): |
|
|
|
new_dtype = np.float16 |
|
else: |
|
|
|
new_dtype = np.float32 |
|
|
|
logger.info(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}") |
|
|
|
if data.dtype != new_dtype: |
|
data = data.astype(new_dtype) |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
|
|
@Model.register("NomicBertModel") |
|
class NomicBertModel(BertModel): |
|
model_arch = gguf.MODEL_ARCH.NOMIC_BERT |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
self.hparams["n_ctx"] = 2048 |
|
|
|
|
|
assert self.hparams["activation_function"] == "swiglu" |
|
|
|
assert self.hparams["causal"] is False |
|
|
|
assert self.hparams["qkv_proj_bias"] is False |
|
assert self.hparams["mlp_fc1_bias"] is False |
|
assert self.hparams["mlp_fc2_bias"] is False |
|
|
|
assert self.hparams["prenorm"] is False |
|
|
|
assert self.hparams["rotary_emb_fraction"] == 1.0 |
|
assert self.hparams["rotary_emb_interleaved"] is False |
|
assert self.hparams["rotary_emb_scale_base"] is None |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"]) |
|
|
|
|
|
@Model.register("GemmaForCausalLM") |
|
class GemmaModel(Model): |
|
model_arch = gguf.MODEL_ARCH.GEMMA |
|
|
|
def set_vocab(self): |
|
self._set_vocab_sentencepiece() |
|
|
|
|
|
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False, |
|
special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot']) |
|
special_vocab._set_special_token("prefix", 67) |
|
special_vocab._set_special_token("suffix", 69) |
|
special_vocab._set_special_token("middle", 68) |
|
special_vocab._set_special_token("fsep", 70) |
|
special_vocab._set_special_token("eot", 107) |
|
special_vocab.add_to_gguf(self.gguf_writer) |
|
|
|
def set_gguf_parameters(self): |
|
hparams = self.hparams |
|
block_count = hparams["num_hidden_layers"] |
|
|
|
self.gguf_writer.add_name(self.dir_model.name) |
|
self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) |
|
self.gguf_writer.add_embedding_length(hparams["hidden_size"]) |
|
self.gguf_writer.add_block_count(block_count) |
|
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) |
|
self.gguf_writer.add_head_count(hparams["num_attention_heads"]) |
|
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"]) |
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) |
|
self.gguf_writer.add_key_length(hparams["head_dim"]) |
|
self.gguf_writer.add_value_length(hparams["head_dim"]) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
def write_tensors(self): |
|
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
|
|
for name, data_torch in self.get_tensors(): |
|
|
|
|
|
if name == "lm_head.weight": |
|
logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.") |
|
continue |
|
|
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
|
|
if name.endswith("norm.weight"): |
|
data_torch = data_torch + 1 |
|
data = data_torch.squeeze().numpy() |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
|
|
@Model.register("Starcoder2ForCausalLM") |
|
class StarCoder2Model(Model): |
|
model_arch = gguf.MODEL_ARCH.STARCODER2 |
|
|
|
|
|
@Model.register("MambaForCausalLM", "MambaLMHeadModel") |
|
class MambaModel(Model): |
|
model_arch = gguf.MODEL_ARCH.MAMBA |
|
|
|
def set_vocab(self): |
|
vocab_size = self.hparams["vocab_size"] |
|
|
|
pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8) |
|
|
|
|
|
vocab_size = -(vocab_size // -pad_vocab) * pad_vocab |
|
self.hparams["vocab_size"] = vocab_size |
|
|
|
if (self.dir_model / "tokenizer.json").is_file(): |
|
self._set_vocab_gpt2() |
|
else: |
|
|
|
tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf" |
|
logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'") |
|
neox_reader = gguf.GGUFReader(tokenizer_path, "r") |
|
|
|
field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL) |
|
self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1])) |
|
|
|
field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE) |
|
self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1])) |
|
|
|
field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST) |
|
self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size]) |
|
|
|
field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE) |
|
self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size]) |
|
|
|
field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES) |
|
self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data]) |
|
|
|
field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID) |
|
self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0]) |
|
|
|
field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID) |
|
self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0]) |
|
|
|
field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID) |
|
self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0]) |
|
|
|
def set_gguf_parameters(self): |
|
d_model = self.find_hparam(["hidden_size", "d_model"]) |
|
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4 |
|
d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model |
|
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16 |
|
|
|
|
|
|
|
dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16) |
|
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5 |
|
|
|
|
|
assert d_inner == 2 * d_model |
|
|
|
self.gguf_writer.add_name(self.dir_model.name) |
|
self.gguf_writer.add_context_length(2**20) |
|
self.gguf_writer.add_embedding_length(d_model) |
|
self.gguf_writer.add_feed_forward_length(0) |
|
self.gguf_writer.add_head_count(0) |
|
self.gguf_writer.add_block_count(self.hparams["n_layer"]) |
|
self.gguf_writer.add_ssm_conv_kernel(d_conv) |
|
self.gguf_writer.add_ssm_inner_size(d_inner) |
|
self.gguf_writer.add_ssm_state_size(d_state) |
|
self.gguf_writer.add_ssm_time_step_rank(dt_rank) |
|
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps) |
|
self.gguf_writer.add_file_type(self.ftype) |
|
|
|
def write_tensors(self): |
|
block_count = self.hparams["n_layer"] |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
|
|
tok_embd = None |
|
tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight" |
|
output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight" |
|
|
|
for name, data_torch in self.get_tensors(): |
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
if name.endswith(".A_log"): |
|
logger.debug("A_log --> A ==> " + new_name) |
|
data_torch = -torch.exp(data_torch) |
|
|
|
|
|
if tok_embd is not None and new_name == output_name: |
|
if torch.equal(tok_embd, data_torch): |
|
logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting") |
|
continue |
|
if new_name == tok_embd_name: |
|
tok_embd = data_torch |
|
|
|
data = data_torch.squeeze().numpy() |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
|
data = data.astype(np.float32) |
|
|
|
|
|
new_weight_name = new_name[:-len(".weight")] if new_name.endswith(".weight") else "" |
|
if self.ftype == 1 and data_dtype == np.float32 and new_weight_name.endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
|
|
@Model.register("CohereForCausalLM") |
|
class CommandR2Model(Model): |
|
model_arch = gguf.MODEL_ARCH.COMMAND_R |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
self.hparams["max_position_embeddings"] = self.hparams["model_max_length"] |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
self.gguf_writer.add_logit_scale(self.hparams["logit_scale"]) |
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) |
|
|
|
|
|
@Model.register("OlmoForCausalLM") |
|
@Model.register("OLMoForCausalLM") |
|
class OlmoModel(Model): |
|
model_arch = gguf.MODEL_ARCH.OLMO |
|
|
|
def set_gguf_parameters(self): |
|
super().set_gguf_parameters() |
|
self.gguf_writer.add_layer_norm_eps(1e-5) |
|
clip_qkv = self.hparams.get("clip_qkv") |
|
if clip_qkv is not None: |
|
self.gguf_writer.add_clamp_kqv(clip_qkv) |
|
|
|
|
|
|
|
def write_tensors(self): |
|
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) |
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) |
|
n_head = self.hparams.get("num_attention_heads") |
|
n_kv_head = self.hparams.get("num_key_value_heads") |
|
for name, data_torch in self.get_tensors(): |
|
old_dtype = data_torch.dtype |
|
|
|
|
|
if data_torch.dtype not in (torch.float16, torch.float32): |
|
data_torch = data_torch.to(torch.float32) |
|
|
|
data = data_torch.numpy() |
|
|
|
if name.endswith("q_proj.weight"): |
|
data = permute(data, n_head, n_head) |
|
if name.endswith("k_proj.weight"): |
|
data = permute(data, n_head, n_kv_head) |
|
|
|
data = data.squeeze() |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
raise ValueError(f"Can not map tensor {name!r}") |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if self.ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if self.ftype == 1 and data_dtype == np.float32 and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") |
|
|
|
self.gguf_writer.add_tensor(new_name, data) |
|
|
|
|
|
|
|
|
|
|
|
def parse_args() -> argparse.Namespace: |
|
parser = argparse.ArgumentParser( |
|
description="Convert a huggingface model to a GGML compatible file") |
|
parser.add_argument( |
|
"--vocab-only", action="store_true", |
|
help="extract only the vocab", |
|
) |
|
parser.add_argument( |
|
"--awq-path", type=Path, default=None, |
|
help="Path to scale awq cache file") |
|
parser.add_argument( |
|
"--outfile", type=Path, |
|
help="path to write to; default: based on input", |
|
) |
|
parser.add_argument( |
|
"--outtype", type=str, choices=["f32", "f16"], default="f16", |
|
help="output format - use f32 for float32, f16 for float16", |
|
) |
|
parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine") |
|
parser.add_argument( |
|
"model", type=Path, |
|
help="directory containing model file", |
|
) |
|
parser.add_argument("--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)") |
|
parser.add_argument("--model-name", type=str, default=None, help="name of the model") |
|
parser.add_argument("--verbose", action="store_true", help="increase output verbosity") |
|
|
|
return parser.parse_args() |
|
|
|
|
|
def main() -> None: |
|
args = parse_args() |
|
|
|
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) |
|
|
|
dir_model = args.model |
|
|
|
if args.awq_path: |
|
sys.path.insert(1, str(Path(__file__).parent / 'awq-py')) |
|
from awq.apply_awq import add_scale_weights |
|
tmp_model_path = args.model / "weighted_model" |
|
dir_model = tmp_model_path |
|
if tmp_model_path.is_dir(): |
|
logger.info(f"{tmp_model_path} exists as a weighted model.") |
|
else: |
|
tmp_model_path.mkdir(parents=True, exist_ok=True) |
|
logger.info("Saving new weighted model ...") |
|
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path)) |
|
logger.info(f"Saved weighted model at {tmp_model_path}.") |
|
|
|
if not dir_model.is_dir(): |
|
logger.error(f'Error: {args.model} is not a directory') |
|
sys.exit(1) |
|
|
|
ftype_map = { |
|
"f32": gguf.GGMLQuantizationType.F32, |
|
"f16": gguf.GGMLQuantizationType.F16, |
|
} |
|
|
|
if args.outfile is not None: |
|
fname_out = args.outfile |
|
else: |
|
|
|
fname_out = dir_model / f'ggml-model-{args.outtype}.gguf' |
|
|
|
logger.info(f"Loading model: {dir_model.name}") |
|
|
|
hparams = Model.load_hparams(dir_model) |
|
|
|
with torch.inference_mode(): |
|
model_class = Model.from_model_architecture(hparams["architectures"][0]) |
|
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file) |
|
|
|
logger.info("Set model parameters") |
|
model_instance.set_gguf_parameters() |
|
|
|
logger.info("Set model tokenizer") |
|
model_instance.set_vocab() |
|
|
|
if args.vocab_only: |
|
logger.info(f"Exporting model vocab to '{fname_out}'") |
|
model_instance.write_vocab() |
|
else: |
|
logger.info(f"Exporting model to '{fname_out}'") |
|
model_instance.write() |
|
|
|
logger.info(f"Model successfully exported to '{fname_out}'") |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |