File size: 2,676 Bytes
22ee1ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265959
 
22ee1ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22ee1ea
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-clickbait-task1-20-epoch-post_title
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-clickbait-task1-20-epoch-post_title

This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co./distilbert/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2043
- Accuracy: 0.705

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 200  | 0.7890          | 0.6825   |
| No log        | 2.0   | 400  | 0.7432          | 0.685    |
| 0.7625        | 3.0   | 600  | 0.7796          | 0.72     |
| 0.7625        | 4.0   | 800  | 0.9322          | 0.6975   |
| 0.3123        | 5.0   | 1000 | 1.0876          | 0.7025   |
| 0.3123        | 6.0   | 1200 | 1.4319          | 0.6875   |
| 0.3123        | 7.0   | 1400 | 1.6751          | 0.6725   |
| 0.073         | 8.0   | 1600 | 1.7350          | 0.7075   |
| 0.073         | 9.0   | 1800 | 1.8997          | 0.6875   |
| 0.023         | 10.0  | 2000 | 2.0127          | 0.695    |
| 0.023         | 11.0  | 2200 | 2.0654          | 0.6775   |
| 0.023         | 12.0  | 2400 | 2.1128          | 0.6975   |
| 0.009         | 13.0  | 2600 | 2.1777          | 0.695    |
| 0.009         | 14.0  | 2800 | 2.1756          | 0.7125   |
| 0.0067        | 15.0  | 3000 | 2.1566          | 0.71     |
| 0.0067        | 16.0  | 3200 | 2.2452          | 0.695    |
| 0.0067        | 17.0  | 3400 | 2.2008          | 0.7      |
| 0.0032        | 18.0  | 3600 | 2.2214          | 0.7125   |
| 0.0032        | 19.0  | 3800 | 2.2151          | 0.7125   |
| 0.0041        | 20.0  | 4000 | 2.2043          | 0.705    |


### Framework versions

- Transformers 4.44.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1