File size: 2,676 Bytes
22ee1ea 1265959 22ee1ea 1265959 22ee1ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-clickbait-task1-20-epoch-post_title
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-clickbait-task1-20-epoch-post_title
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co./distilbert/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2043
- Accuracy: 0.705
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 200 | 0.7890 | 0.6825 |
| No log | 2.0 | 400 | 0.7432 | 0.685 |
| 0.7625 | 3.0 | 600 | 0.7796 | 0.72 |
| 0.7625 | 4.0 | 800 | 0.9322 | 0.6975 |
| 0.3123 | 5.0 | 1000 | 1.0876 | 0.7025 |
| 0.3123 | 6.0 | 1200 | 1.4319 | 0.6875 |
| 0.3123 | 7.0 | 1400 | 1.6751 | 0.6725 |
| 0.073 | 8.0 | 1600 | 1.7350 | 0.7075 |
| 0.073 | 9.0 | 1800 | 1.8997 | 0.6875 |
| 0.023 | 10.0 | 2000 | 2.0127 | 0.695 |
| 0.023 | 11.0 | 2200 | 2.0654 | 0.6775 |
| 0.023 | 12.0 | 2400 | 2.1128 | 0.6975 |
| 0.009 | 13.0 | 2600 | 2.1777 | 0.695 |
| 0.009 | 14.0 | 2800 | 2.1756 | 0.7125 |
| 0.0067 | 15.0 | 3000 | 2.1566 | 0.71 |
| 0.0067 | 16.0 | 3200 | 2.2452 | 0.695 |
| 0.0067 | 17.0 | 3400 | 2.2008 | 0.7 |
| 0.0032 | 18.0 | 3600 | 2.2214 | 0.7125 |
| 0.0032 | 19.0 | 3800 | 2.2151 | 0.7125 |
| 0.0041 | 20.0 | 4000 | 2.2043 | 0.705 |
### Framework versions
- Transformers 4.44.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|