--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-chest-xray results: [] --- # vit-base-chest-xray This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the trpakov/chest-xray-classification dataset. It achieves the following results on the evaluation set: - Loss: 0.0856 - Accuracy: 0.9742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.1891 | 0.1307 | 100 | 0.1028 | 0.9665 | | 0.2123 | 0.2614 | 200 | 0.1254 | 0.9562 | | 0.0536 | 0.3922 | 300 | 0.1142 | 0.9691 | | 0.0799 | 0.5229 | 400 | 0.1173 | 0.9648 | | 0.0537 | 0.6536 | 500 | 0.0856 | 0.9742 | | 0.0911 | 0.7843 | 600 | 0.2005 | 0.9425 | | 0.1027 | 0.9150 | 700 | 0.0869 | 0.9708 | | 0.1011 | 1.0458 | 800 | 0.1063 | 0.9631 | | 0.0717 | 1.1765 | 900 | 0.1424 | 0.9588 | | 0.0605 | 1.3072 | 1000 | 0.1525 | 0.9648 | | 0.0573 | 1.4379 | 1100 | 0.0970 | 0.9700 | | 0.024 | 1.5686 | 1200 | 0.0867 | 0.9751 | | 0.0056 | 1.6993 | 1300 | 0.0888 | 0.9760 | | 0.0051 | 1.8301 | 1400 | 0.1054 | 0.9768 | | 0.063 | 1.9608 | 1500 | 0.1896 | 0.9571 | | 0.002 | 2.0915 | 1600 | 0.1886 | 0.9588 | | 0.005 | 2.2222 | 1700 | 0.1184 | 0.9734 | | 0.0083 | 2.3529 | 1800 | 0.1084 | 0.9760 | | 0.0013 | 2.4837 | 1900 | 0.0903 | 0.9777 | | 0.0298 | 2.6144 | 2000 | 0.1023 | 0.9734 | | 0.0008 | 2.7451 | 2100 | 0.1104 | 0.9768 | | 0.0011 | 2.8758 | 2200 | 0.1128 | 0.9785 | | 0.0006 | 3.0065 | 2300 | 0.1395 | 0.9734 | | 0.0059 | 3.1373 | 2400 | 0.1419 | 0.9725 | | 0.0005 | 3.2680 | 2500 | 0.1335 | 0.9777 | | 0.0005 | 3.3987 | 2600 | 0.1249 | 0.9768 | | 0.0007 | 3.5294 | 2700 | 0.1157 | 0.9777 | | 0.0005 | 3.6601 | 2800 | 0.1202 | 0.9785 | | 0.001 | 3.7908 | 2900 | 0.1239 | 0.9777 | | 0.0004 | 3.9216 | 3000 | 0.1231 | 0.9768 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1