File size: 2,788 Bytes
3a1cb51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
library_name: transformers
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-en-ar
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: Motarjem-v0.1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Motarjem-v0.1

This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co./Helsinki-NLP/opus-mt-en-ar) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1540
- Bleu: 29.991
- Gen Len: 11.75

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Bleu    | Gen Len |
|:-------------:|:------:|:-----:|:---------------:|:-------:|:-------:|
| 3.7908        | 0.5857 | 1000  | 3.7377          | 6.18    | 16.2781 |
| 3.5926        | 1.1716 | 2000  | 3.3270          | 8.0493  | 16.4099 |
| 3.2234        | 1.7572 | 3000  | 3.0900          | 9.7393  | 15.2034 |
| 2.9178        | 2.3432 | 4000  | 2.8567          | 9.8133  | 17.6295 |
| 2.7302        | 2.9288 | 5000  | 2.6926          | 15.7344 | 12.8374 |
| 2.4324        | 3.5148 | 6000  | 2.5841          | 16.7132 | 12.9787 |
| 2.3135        | 4.1007 | 7000  | 2.4542          | 17.5718 | 13.288  |
| 2.0808        | 4.6864 | 8000  | 2.3554          | 18.0186 | 13.6381 |
| 1.9353        | 5.2723 | 9000  | 2.3031          | 20.0612 | 12.8465 |
| 1.8244        | 5.8580 | 10000 | 2.1954          | 19.1501 | 14.0303 |
| 1.6091        | 6.4439 | 11000 | 2.2027          | 23.3063 | 12.3297 |
| 1.5548        | 7.0299 | 12000 | 2.1910          | 23.6853 | 12.4534 |
| 1.325         | 7.6155 | 13000 | 2.1362          | 27.8799 | 11.4823 |
| 1.2595        | 8.2015 | 14000 | 2.1696          | 25.782  | 12.1096 |
| 1.1253        | 8.7871 | 15000 | 2.1173          | 27.8543 | 11.8945 |
| 0.9858        | 9.3731 | 16000 | 2.1696          | 29.3317 | 11.7985 |
| 0.938         | 9.9587 | 17000 | 2.1540          | 29.991  | 11.75   |


### Framework versions

- Transformers 4.48.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0