aari1995 commited on
Commit
b0ded5f
·
verified ·
1 Parent(s): c738982

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -320
README.md CHANGED
@@ -276,21 +276,28 @@ model-index:
276
  name: Spearman Max
277
  ---
278
 
279
- # SentenceTransformer based on aari1995/gbert-large-nli_mix
 
 
 
 
 
 
 
 
280
 
281
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [aari1995/gbert-large-nli_mix](https://huggingface.co/aari1995/gbert-large-nli_mix) on the [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
282
 
283
  ## Model Details
284
 
285
  ### Model Description
286
  - **Model Type:** Sentence Transformer
287
- - **Base model:** [aari1995/gbert-large-nli_mix](https://huggingface.co/aari1995/gbert-large-nli_mix) <!-- at revision 86b82327d5898d81f9b8caafbf228b803f25abc1 -->
288
  - **Maximum Sequence Length:** 8192 tokens
289
  - **Output Dimensionality:** 1024 tokens
290
  - **Similarity Function:** Cosine Similarity
291
  - **Training Dataset:**
292
- - [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
293
- - **Languages:** de, en, es, fr, it, nl, pl, pt, ru, zh
294
  <!-- - **License:** Unknown -->
295
 
296
  ### Model Sources
@@ -323,7 +330,7 @@ Then you can load this model and run inference.
323
  from sentence_transformers import SentenceTransformer
324
 
325
  # Download from the 🤗 Hub
326
- model = SentenceTransformer("aari1995/German_Semantic_V3_2_STS_MIX")
327
  # Run inference
328
  sentences = [
329
  'Eine Flagge weht.',
@@ -485,24 +492,6 @@ You can finetune this model on your own dataset.
485
 
486
  ## Training Details
487
 
488
- ### Training Dataset
489
-
490
- #### PhilipMay/stsb_multi_mt
491
-
492
- * Dataset: [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
493
- * Size: 22,996 training samples
494
- * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
495
- * Approximate statistics based on the first 1000 samples:
496
- | | sentence1 | sentence2 | score |
497
- |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
498
- | type | string | string | float |
499
- | details | <ul><li>min: 6 tokens</li><li>mean: 18.13 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.25 tokens</li><li>max: 90 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
500
- * Samples:
501
- | sentence1 | sentence2 | score |
502
- |:-------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------|
503
- | <code>schütze wegen mordes an schwarzem us-jugendlichen angeklagt</code> | <code>gedanken zu den rassenbeziehungen unter einem schwarzen präsidenten</code> | <code>0.1599999964237213</code> |
504
- | <code>fußballspieler kicken einen fußball in das tor.</code> | <code>Ein Fußballspieler schießt ein Tor.</code> | <code>0.7599999904632568</code> |
505
- | <code>obama lockert abschiebungsregeln für junge einwanderer</code> | <code>usa lockert abschiebebestimmungen für jugendliche: napolitano</code> | <code>0.800000011920929</code> |
506
  * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
507
  ```json
508
  {
@@ -526,303 +515,10 @@ You can finetune this model on your own dataset.
526
  "n_dims_per_step": -1
527
  }
528
  ```
 
529
 
530
- ### Evaluation Dataset
531
-
532
- #### PhilipMay/stsb_multi_mt
533
-
534
- * Dataset: [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
535
- * Size: 1,500 evaluation samples
536
- * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
537
- * Approximate statistics based on the first 1000 samples:
538
- | | sentence1 | sentence2 | score |
539
- |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
540
- | type | string | string | float |
541
- | details | <ul><li>min: 5 tokens</li><li>mean: 16.54 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.53 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
542
- * Samples:
543
- | sentence1 | sentence2 | score |
544
- |:-------------------------------------------------------------|:-----------------------------------------------------------|:-------------------------------|
545
- | <code>Ein Mann mit einem Schutzhelm tanzt.</code> | <code>Ein Mann mit einem Schutzhelm tanzt.</code> | <code>1.0</code> |
546
- | <code>Ein kleines Kind reitet auf einem Pferd.</code> | <code>Ein Kind reitet auf einem Pferd.</code> | <code>0.949999988079071</code> |
547
- | <code>Ein Mann verfüttert eine Maus an eine Schlange.</code> | <code>Der Mann füttert die Schlange mit einer Maus.</code> | <code>1.0</code> |
548
- * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
549
- ```json
550
- {
551
- "loss": "ContrastiveLoss",
552
- "matryoshka_dims": [
553
- 1024,
554
- 768,
555
- 512,
556
- 256,
557
- 128,
558
- 64
559
- ],
560
- "matryoshka_weights": [
561
- 1,
562
- 1,
563
- 1,
564
- 1,
565
- 1,
566
- 1
567
- ],
568
- "n_dims_per_step": -1
569
- }
570
- ```
571
-
572
- ### Training Hyperparameters
573
- #### Non-Default Hyperparameters
574
-
575
- - `eval_strategy`: steps
576
- - `learning_rate`: 5e-06
577
- - `num_train_epochs`: 4
578
- - `warmup_ratio`: 0.1
579
-
580
- #### All Hyperparameters
581
- <details><summary>Click to expand</summary>
582
-
583
- - `overwrite_output_dir`: False
584
- - `do_predict`: False
585
- - `eval_strategy`: steps
586
- - `prediction_loss_only`: True
587
- - `per_device_train_batch_size`: 8
588
- - `per_device_eval_batch_size`: 8
589
- - `per_gpu_train_batch_size`: None
590
- - `per_gpu_eval_batch_size`: None
591
- - `gradient_accumulation_steps`: 1
592
- - `eval_accumulation_steps`: None
593
- - `learning_rate`: 5e-06
594
- - `weight_decay`: 0.0
595
- - `adam_beta1`: 0.9
596
- - `adam_beta2`: 0.999
597
- - `adam_epsilon`: 1e-08
598
- - `max_grad_norm`: 1.0
599
- - `num_train_epochs`: 4
600
- - `max_steps`: -1
601
- - `lr_scheduler_type`: linear
602
- - `lr_scheduler_kwargs`: {}
603
- - `warmup_ratio`: 0.1
604
- - `warmup_steps`: 0
605
- - `log_level`: passive
606
- - `log_level_replica`: warning
607
- - `log_on_each_node`: True
608
- - `logging_nan_inf_filter`: True
609
- - `save_safetensors`: True
610
- - `save_on_each_node`: False
611
- - `save_only_model`: False
612
- - `restore_callback_states_from_checkpoint`: False
613
- - `no_cuda`: False
614
- - `use_cpu`: False
615
- - `use_mps_device`: False
616
- - `seed`: 42
617
- - `data_seed`: None
618
- - `jit_mode_eval`: False
619
- - `use_ipex`: False
620
- - `bf16`: False
621
- - `fp16`: False
622
- - `fp16_opt_level`: O1
623
- - `half_precision_backend`: auto
624
- - `bf16_full_eval`: False
625
- - `fp16_full_eval`: False
626
- - `tf32`: None
627
- - `local_rank`: 0
628
- - `ddp_backend`: None
629
- - `tpu_num_cores`: None
630
- - `tpu_metrics_debug`: False
631
- - `debug`: []
632
- - `dataloader_drop_last`: False
633
- - `dataloader_num_workers`: 0
634
- - `dataloader_prefetch_factor`: None
635
- - `past_index`: -1
636
- - `disable_tqdm`: False
637
- - `remove_unused_columns`: True
638
- - `label_names`: None
639
- - `load_best_model_at_end`: False
640
- - `ignore_data_skip`: False
641
- - `fsdp`: []
642
- - `fsdp_min_num_params`: 0
643
- - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
644
- - `fsdp_transformer_layer_cls_to_wrap`: None
645
- - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
646
- - `deepspeed`: None
647
- - `label_smoothing_factor`: 0.0
648
- - `optim`: adamw_torch
649
- - `optim_args`: None
650
- - `adafactor`: False
651
- - `group_by_length`: False
652
- - `length_column_name`: length
653
- - `ddp_find_unused_parameters`: None
654
- - `ddp_bucket_cap_mb`: None
655
- - `ddp_broadcast_buffers`: False
656
- - `dataloader_pin_memory`: True
657
- - `dataloader_persistent_workers`: False
658
- - `skip_memory_metrics`: True
659
- - `use_legacy_prediction_loop`: False
660
- - `push_to_hub`: False
661
- - `resume_from_checkpoint`: None
662
- - `hub_model_id`: None
663
- - `hub_strategy`: every_save
664
- - `hub_private_repo`: False
665
- - `hub_always_push`: False
666
- - `gradient_checkpointing`: False
667
- - `gradient_checkpointing_kwargs`: None
668
- - `include_inputs_for_metrics`: False
669
- - `eval_do_concat_batches`: True
670
- - `fp16_backend`: auto
671
- - `push_to_hub_model_id`: None
672
- - `push_to_hub_organization`: None
673
- - `mp_parameters`:
674
- - `auto_find_batch_size`: False
675
- - `full_determinism`: False
676
- - `torchdynamo`: None
677
- - `ray_scope`: last
678
- - `ddp_timeout`: 1800
679
- - `torch_compile`: False
680
- - `torch_compile_backend`: None
681
- - `torch_compile_mode`: None
682
- - `dispatch_batches`: None
683
- - `split_batches`: None
684
- - `include_tokens_per_second`: False
685
- - `include_num_input_tokens_seen`: False
686
- - `neftune_noise_alpha`: None
687
- - `optim_target_modules`: None
688
- - `batch_eval_metrics`: False
689
- - `eval_on_start`: False
690
- - `batch_sampler`: batch_sampler
691
- - `multi_dataset_batch_sampler`: proportional
692
-
693
- </details>
694
-
695
- ### Training Logs
696
- <details><summary>Click to expand</summary>
697
-
698
- | Epoch | Step | Training Loss | loss | sts-dev-1024_spearman_cosine | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-1024_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
699
- |:------:|:-----:|:-------------:|:------:|:----------------------------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:-----------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
700
- | 0.0348 | 100 | 0.2334 | 0.2530 | 0.8329 | 0.8219 | 0.8274 | 0.8292 | 0.8148 | 0.8317 | - | - | - | - | - | - |
701
- | 0.0696 | 200 | 0.1959 | 0.1921 | 0.8285 | 0.8183 | 0.8234 | 0.8250 | 0.8121 | 0.8275 | - | - | - | - | - | - |
702
- | 0.1043 | 300 | 0.1468 | 0.1592 | 0.8346 | 0.8267 | 0.8305 | 0.8319 | 0.8227 | 0.8334 | - | - | - | - | - | - |
703
- | 0.1391 | 400 | 0.1346 | 0.1511 | 0.8513 | 0.8451 | 0.8486 | 0.8497 | 0.8418 | 0.8505 | - | - | - | - | - | - |
704
- | 0.1739 | 500 | 0.1333 | 0.1480 | 0.8590 | 0.8526 | 0.8563 | 0.8576 | 0.8502 | 0.8583 | - | - | - | - | - | - |
705
- | 0.2087 | 600 | 0.1328 | 0.1478 | 0.8626 | 0.8557 | 0.8595 | 0.8612 | 0.8530 | 0.8620 | - | - | - | - | - | - |
706
- | 0.2435 | 700 | 0.1345 | 0.1451 | 0.8631 | 0.8563 | 0.8599 | 0.8618 | 0.8548 | 0.8626 | - | - | - | - | - | - |
707
- | 0.2783 | 800 | 0.1282 | 0.1423 | 0.8705 | 0.8625 | 0.8671 | 0.8692 | 0.8601 | 0.8698 | - | - | - | - | - | - |
708
- | 0.3130 | 900 | 0.1317 | 0.1416 | 0.8724 | 0.8639 | 0.8690 | 0.8714 | 0.8619 | 0.8716 | - | - | - | - | - | - |
709
- | 0.3478 | 1000 | 0.1295 | 0.1422 | 0.8641 | 0.8577 | 0.8617 | 0.8637 | 0.8556 | 0.8639 | - | - | - | - | - | - |
710
- | 0.3826 | 1100 | 0.1267 | 0.1427 | 0.8675 | 0.8603 | 0.8644 | 0.8666 | 0.8581 | 0.8671 | - | - | - | - | - | - |
711
- | 0.4174 | 1200 | 0.127 | 0.1417 | 0.8674 | 0.8589 | 0.8635 | 0.8664 | 0.8570 | 0.8671 | - | - | - | - | - | - |
712
- | 0.4522 | 1300 | 0.1292 | 0.1419 | 0.8756 | 0.8663 | 0.8711 | 0.8739 | 0.8641 | 0.8748 | - | - | - | - | - | - |
713
- | 0.4870 | 1400 | 0.1281 | 0.1411 | 0.8726 | 0.8646 | 0.8686 | 0.8713 | 0.8616 | 0.8721 | - | - | - | - | - | - |
714
- | 0.5217 | 1500 | 0.1292 | 0.1407 | 0.8738 | 0.8654 | 0.8698 | 0.8727 | 0.8617 | 0.8739 | - | - | - | - | - | - |
715
- | 0.5565 | 1600 | 0.1251 | 0.1419 | 0.8732 | 0.8643 | 0.8686 | 0.8720 | 0.8605 | 0.8731 | - | - | - | - | - | - |
716
- | 0.5913 | 1700 | 0.1288 | 0.1412 | 0.8782 | 0.8682 | 0.8731 | 0.8769 | 0.8652 | 0.8779 | - | - | - | - | - | - |
717
- | 0.6261 | 1800 | 0.1306 | 0.1405 | 0.8755 | 0.8664 | 0.8710 | 0.8744 | 0.8632 | 0.8751 | - | - | - | - | - | - |
718
- | 0.6609 | 1900 | 0.1289 | 0.1410 | 0.8739 | 0.8647 | 0.8691 | 0.8727 | 0.8614 | 0.8736 | - | - | - | - | - | - |
719
- | 0.6957 | 2000 | 0.1287 | 0.1403 | 0.8773 | 0.8669 | 0.8719 | 0.8758 | 0.8637 | 0.8769 | - | - | - | - | - | - |
720
- | 0.7304 | 2100 | 0.126 | 0.1402 | 0.8773 | 0.8675 | 0.8722 | 0.8758 | 0.8635 | 0.8772 | - | - | - | - | - | - |
721
- | 0.7652 | 2200 | 0.1274 | 0.1401 | 0.8799 | 0.8693 | 0.8743 | 0.8784 | 0.8652 | 0.8797 | - | - | - | - | - | - |
722
- | 0.8 | 2300 | 0.1234 | 0.1399 | 0.8777 | 0.8686 | 0.8729 | 0.8767 | 0.8650 | 0.8778 | - | - | - | - | - | - |
723
- | 0.8348 | 2400 | 0.128 | 0.1401 | 0.8769 | 0.8660 | 0.8712 | 0.8759 | 0.8621 | 0.8768 | - | - | - | - | - | - |
724
- | 0.8696 | 2500 | 0.1269 | 0.1403 | 0.8756 | 0.8648 | 0.8698 | 0.8742 | 0.8605 | 0.8750 | - | - | - | - | - | - |
725
- | 0.9043 | 2600 | 0.1243 | 0.1401 | 0.8762 | 0.8665 | 0.8711 | 0.8751 | 0.8622 | 0.8760 | - | - | - | - | - | - |
726
- | 0.9391 | 2700 | 0.1277 | 0.1406 | 0.8742 | 0.8649 | 0.8693 | 0.8725 | 0.8613 | 0.8738 | - | - | - | - | - | - |
727
- | 0.9739 | 2800 | 0.1287 | 0.1394 | 0.8789 | 0.8689 | 0.8738 | 0.8773 | 0.8648 | 0.8785 | - | - | - | - | - | - |
728
- | 1.0087 | 2900 | 0.1274 | 0.1397 | 0.8784 | 0.8682 | 0.8731 | 0.8769 | 0.8632 | 0.8782 | - | - | - | - | - | - |
729
- | 1.0435 | 3000 | 0.129 | 0.1401 | 0.8800 | 0.8693 | 0.8743 | 0.8782 | 0.8653 | 0.8795 | - | - | - | - | - | - |
730
- | 1.0783 | 3100 | 0.121 | 0.1408 | 0.8785 | 0.8682 | 0.8731 | 0.8769 | 0.8638 | 0.8782 | - | - | - | - | - | - |
731
- | 1.1130 | 3200 | 0.1249 | 0.1399 | 0.8773 | 0.8668 | 0.8722 | 0.8759 | 0.8625 | 0.8771 | - | - | - | - | - | - |
732
- | 1.1478 | 3300 | 0.1252 | 0.1404 | 0.8740 | 0.8643 | 0.8688 | 0.8724 | 0.8593 | 0.8737 | - | - | - | - | - | - |
733
- | 1.1826 | 3400 | 0.126 | 0.1398 | 0.8761 | 0.8657 | 0.8707 | 0.8745 | 0.8610 | 0.8758 | - | - | - | - | - | - |
734
- | 1.2174 | 3500 | 0.1279 | 0.1400 | 0.8760 | 0.8661 | 0.8708 | 0.8745 | 0.8617 | 0.8759 | - | - | - | - | - | - |
735
- | 1.2522 | 3600 | 0.1264 | 0.1399 | 0.8786 | 0.8684 | 0.8734 | 0.8768 | 0.8633 | 0.8783 | - | - | - | - | - | - |
736
- | 1.2870 | 3700 | 0.126 | 0.1395 | 0.8789 | 0.8690 | 0.8734 | 0.8773 | 0.8643 | 0.8786 | - | - | - | - | - | - |
737
- | 1.3217 | 3800 | 0.1234 | 0.1399 | 0.8777 | 0.8669 | 0.8723 | 0.8760 | 0.8625 | 0.8775 | - | - | - | - | - | - |
738
- | 1.3565 | 3900 | 0.1269 | 0.1397 | 0.8777 | 0.8671 | 0.8725 | 0.8760 | 0.8630 | 0.8773 | - | - | - | - | - | - |
739
- | 1.3913 | 4000 | 0.1223 | 0.1393 | 0.8806 | 0.8694 | 0.8751 | 0.8789 | 0.8654 | 0.8802 | - | - | - | - | - | - |
740
- | 1.4261 | 4100 | 0.1227 | 0.1399 | 0.8775 | 0.8671 | 0.8728 | 0.8764 | 0.8622 | 0.8774 | - | - | - | - | - | - |
741
- | 1.4609 | 4200 | 0.1263 | 0.1402 | 0.8771 | 0.8669 | 0.8724 | 0.8756 | 0.8619 | 0.8769 | - | - | - | - | - | - |
742
- | 1.4957 | 4300 | 0.1263 | 0.1400 | 0.8781 | 0.8674 | 0.8730 | 0.8766 | 0.8627 | 0.8778 | - | - | - | - | - | - |
743
- | 1.5304 | 4400 | 0.1302 | 0.1396 | 0.8778 | 0.8675 | 0.8728 | 0.8761 | 0.8628 | 0.8775 | - | - | - | - | - | - |
744
- | 1.5652 | 4500 | 0.1274 | 0.1393 | 0.8789 | 0.8685 | 0.8736 | 0.8770 | 0.8637 | 0.8784 | - | - | - | - | - | - |
745
- | 1.6 | 4600 | 0.1273 | 0.1394 | 0.8794 | 0.8683 | 0.8737 | 0.8773 | 0.8637 | 0.8789 | - | - | - | - | - | - |
746
- | 1.6348 | 4700 | 0.1297 | 0.1391 | 0.8822 | 0.8712 | 0.8764 | 0.8800 | 0.8666 | 0.8817 | - | - | - | - | - | - |
747
- | 1.6696 | 4800 | 0.1249 | 0.1392 | 0.8804 | 0.8694 | 0.8748 | 0.8785 | 0.8643 | 0.8802 | - | - | - | - | - | - |
748
- | 1.7043 | 4900 | 0.1286 | 0.1390 | 0.8803 | 0.8693 | 0.8746 | 0.8784 | 0.8643 | 0.8800 | - | - | - | - | - | - |
749
- | 1.7391 | 5000 | 0.1271 | 0.1392 | 0.8799 | 0.8697 | 0.8745 | 0.8780 | 0.8645 | 0.8795 | - | - | - | - | - | - |
750
- | 1.7739 | 5100 | 0.1293 | 0.1391 | 0.8803 | 0.8702 | 0.8748 | 0.8790 | 0.8648 | 0.8803 | - | - | - | - | - | - |
751
- | 1.8087 | 5200 | 0.1233 | 0.1391 | 0.8793 | 0.8692 | 0.8739 | 0.8777 | 0.8639 | 0.8791 | - | - | - | - | - | - |
752
- | 1.8435 | 5300 | 0.1239 | 0.1394 | 0.8805 | 0.8705 | 0.8748 | 0.8788 | 0.8656 | 0.8802 | - | - | - | - | - | - |
753
- | 1.8783 | 5400 | 0.124 | 0.1392 | 0.8795 | 0.8692 | 0.8742 | 0.8780 | 0.8640 | 0.8792 | - | - | - | - | - | - |
754
- | 1.9130 | 5500 | 0.1245 | 0.1390 | 0.8797 | 0.8697 | 0.8744 | 0.8782 | 0.8645 | 0.8794 | - | - | - | - | - | - |
755
- | 1.9478 | 5600 | 0.1257 | 0.1391 | 0.8794 | 0.8689 | 0.8741 | 0.8778 | 0.8637 | 0.8791 | - | - | - | - | - | - |
756
- | 1.9826 | 5700 | 0.1231 | 0.1389 | 0.8807 | 0.8708 | 0.8756 | 0.8793 | 0.8663 | 0.8804 | - | - | - | - | - | - |
757
- | 2.0174 | 5800 | 0.1216 | 0.1390 | 0.8781 | 0.8678 | 0.8733 | 0.8768 | 0.8630 | 0.8779 | - | - | - | - | - | - |
758
- | 2.0522 | 5900 | 0.1252 | 0.1387 | 0.8795 | 0.8695 | 0.8745 | 0.8784 | 0.8639 | 0.8794 | - | - | - | - | - | - |
759
- | 2.0870 | 6000 | 0.1242 | 0.1387 | 0.8799 | 0.8703 | 0.8749 | 0.8787 | 0.8652 | 0.8798 | - | - | - | - | - | - |
760
- | 2.1217 | 6100 | 0.1231 | 0.1392 | 0.8796 | 0.8702 | 0.8748 | 0.8784 | 0.8653 | 0.8795 | - | - | - | - | - | - |
761
- | 2.1565 | 6200 | 0.1217 | 0.1391 | 0.8797 | 0.8704 | 0.8746 | 0.8784 | 0.8655 | 0.8794 | - | - | - | - | - | - |
762
- | 2.1913 | 6300 | 0.1259 | 0.1389 | 0.8803 | 0.8710 | 0.8756 | 0.8789 | 0.8664 | 0.8800 | - | - | - | - | - | - |
763
- | 2.2261 | 6400 | 0.1262 | 0.1386 | 0.8813 | 0.8714 | 0.8762 | 0.8796 | 0.8667 | 0.8809 | - | - | - | - | - | - |
764
- | 2.2609 | 6500 | 0.127 | 0.1392 | 0.8793 | 0.8701 | 0.8743 | 0.8778 | 0.8652 | 0.8792 | - | - | - | - | - | - |
765
- | 2.2957 | 6600 | 0.1275 | 0.1391 | 0.8806 | 0.8710 | 0.8755 | 0.8788 | 0.8663 | 0.8803 | - | - | - | - | - | - |
766
- | 2.3304 | 6700 | 0.1228 | 0.1394 | 0.8795 | 0.8693 | 0.8741 | 0.8774 | 0.8646 | 0.8791 | - | - | - | - | - | - |
767
- | 2.3652 | 6800 | 0.1243 | 0.1390 | 0.8803 | 0.8700 | 0.8747 | 0.8783 | 0.8655 | 0.8797 | - | - | - | - | - | - |
768
- | 2.4 | 6900 | 0.1292 | 0.1389 | 0.8795 | 0.8697 | 0.8743 | 0.8778 | 0.8650 | 0.8791 | - | - | - | - | - | - |
769
- | 2.4348 | 7000 | 0.1238 | 0.1390 | 0.8799 | 0.8697 | 0.8744 | 0.8782 | 0.8648 | 0.8795 | - | - | - | - | - | - |
770
- | 2.4696 | 7100 | 0.1246 | 0.1389 | 0.8800 | 0.8695 | 0.8743 | 0.8780 | 0.8649 | 0.8795 | - | - | - | - | - | - |
771
- | 2.5043 | 7200 | 0.1265 | 0.1396 | 0.8802 | 0.8695 | 0.8743 | 0.8781 | 0.8647 | 0.8796 | - | - | - | - | - | - |
772
- | 2.5391 | 7300 | 0.1229 | 0.1390 | 0.8813 | 0.8708 | 0.8753 | 0.8796 | 0.8665 | 0.8809 | - | - | - | - | - | - |
773
- | 2.5739 | 7400 | 0.1244 | 0.1389 | 0.8808 | 0.8706 | 0.8749 | 0.8790 | 0.8665 | 0.8803 | - | - | - | - | - | - |
774
- | 2.6087 | 7500 | 0.1223 | 0.1389 | 0.8813 | 0.8709 | 0.8753 | 0.8797 | 0.8662 | 0.8807 | - | - | - | - | - | - |
775
- | 2.6435 | 7600 | 0.1268 | 0.1387 | 0.8810 | 0.8704 | 0.8752 | 0.8793 | 0.8659 | 0.8805 | - | - | - | - | - | - |
776
- | 2.6783 | 7700 | 0.1218 | 0.1387 | 0.8817 | 0.8710 | 0.8755 | 0.8798 | 0.8665 | 0.8809 | - | - | - | - | - | - |
777
- | 2.7130 | 7800 | 0.1225 | 0.1388 | 0.8804 | 0.8700 | 0.8745 | 0.8787 | 0.8653 | 0.8799 | - | - | - | - | - | - |
778
- | 2.7478 | 7900 | 0.1263 | 0.1391 | 0.8807 | 0.8703 | 0.8745 | 0.8788 | 0.8654 | 0.8801 | - | - | - | - | - | - |
779
- | 2.7826 | 8000 | 0.1261 | 0.1388 | 0.8804 | 0.8698 | 0.8743 | 0.8787 | 0.8652 | 0.8799 | - | - | - | - | - | - |
780
- | 2.8174 | 8100 | 0.1267 | 0.1386 | 0.8814 | 0.8707 | 0.8750 | 0.8795 | 0.8658 | 0.8807 | - | - | - | - | - | - |
781
- | 2.8522 | 8200 | 0.1236 | 0.1387 | 0.8809 | 0.8703 | 0.8747 | 0.8792 | 0.8659 | 0.8803 | - | - | - | - | - | - |
782
- | 2.8870 | 8300 | 0.1222 | 0.1390 | 0.8802 | 0.8696 | 0.8741 | 0.8786 | 0.8649 | 0.8799 | - | - | - | - | - | - |
783
- | 2.9217 | 8400 | 0.1236 | 0.1388 | 0.8807 | 0.8700 | 0.8747 | 0.8790 | 0.8653 | 0.8802 | - | - | - | - | - | - |
784
- | 2.9565 | 8500 | 0.1233 | 0.1389 | 0.8808 | 0.8705 | 0.8752 | 0.8791 | 0.8659 | 0.8806 | - | - | - | - | - | - |
785
- | 2.9913 | 8600 | 0.1262 | 0.1388 | 0.8808 | 0.8704 | 0.8750 | 0.8792 | 0.8658 | 0.8805 | - | - | - | - | - | - |
786
- | 3.0261 | 8700 | 0.1277 | 0.1388 | 0.8795 | 0.8690 | 0.8737 | 0.8778 | 0.8640 | 0.8791 | - | - | - | - | - | - |
787
- | 3.0609 | 8800 | 0.1243 | 0.1387 | 0.8809 | 0.8705 | 0.8751 | 0.8791 | 0.8656 | 0.8803 | - | - | - | - | - | - |
788
- | 3.0957 | 8900 | 0.1206 | 0.1387 | 0.8813 | 0.8709 | 0.8754 | 0.8796 | 0.8661 | 0.8807 | - | - | - | - | - | - |
789
- | 3.1304 | 9000 | 0.1217 | 0.1388 | 0.8815 | 0.8716 | 0.8758 | 0.8797 | 0.8670 | 0.8810 | - | - | - | - | - | - |
790
- | 3.1652 | 9100 | 0.1236 | 0.1390 | 0.8803 | 0.8702 | 0.8744 | 0.8785 | 0.8653 | 0.8798 | - | - | - | - | - | - |
791
- | 3.2 | 9200 | 0.1244 | 0.1389 | 0.8799 | 0.8697 | 0.8741 | 0.8783 | 0.8647 | 0.8795 | - | - | - | - | - | - |
792
- | 3.2348 | 9300 | 0.1247 | 0.1388 | 0.8802 | 0.8698 | 0.8743 | 0.8785 | 0.8650 | 0.8798 | - | - | - | - | - | - |
793
- | 3.2696 | 9400 | 0.1214 | 0.1388 | 0.8810 | 0.8710 | 0.8751 | 0.8793 | 0.8663 | 0.8806 | - | - | - | - | - | - |
794
- | 3.3043 | 9500 | 0.121 | 0.1386 | 0.8808 | 0.8709 | 0.8749 | 0.8791 | 0.8662 | 0.8803 | - | - | - | - | - | - |
795
- | 3.3391 | 9600 | 0.1205 | 0.1387 | 0.8804 | 0.8705 | 0.8746 | 0.8789 | 0.8655 | 0.8800 | - | - | - | - | - | - |
796
- | 3.3739 | 9700 | 0.1203 | 0.1387 | 0.8807 | 0.8708 | 0.8750 | 0.8790 | 0.8661 | 0.8802 | - | - | - | - | - | - |
797
- | 3.4087 | 9800 | 0.1239 | 0.1386 | 0.8811 | 0.8711 | 0.8752 | 0.8794 | 0.8663 | 0.8805 | - | - | - | - | - | - |
798
- | 3.4435 | 9900 | 0.1197 | 0.1387 | 0.8808 | 0.8709 | 0.8750 | 0.8792 | 0.8662 | 0.8804 | - | - | - | - | - | - |
799
- | 3.4783 | 10000 | 0.1252 | 0.1388 | 0.8805 | 0.8704 | 0.8746 | 0.8787 | 0.8657 | 0.8800 | - | - | - | - | - | - |
800
- | 3.5130 | 10100 | 0.1229 | 0.1388 | 0.8803 | 0.8703 | 0.8745 | 0.8786 | 0.8654 | 0.8799 | - | - | - | - | - | - |
801
- | 3.5478 | 10200 | 0.1258 | 0.1387 | 0.8805 | 0.8704 | 0.8747 | 0.8787 | 0.8653 | 0.8801 | - | - | - | - | - | - |
802
- | 3.5826 | 10300 | 0.1232 | 0.1387 | 0.8806 | 0.8706 | 0.8750 | 0.8790 | 0.8656 | 0.8802 | - | - | - | - | - | - |
803
- | 3.6174 | 10400 | 0.1286 | 0.1388 | 0.8807 | 0.8706 | 0.8749 | 0.8790 | 0.8656 | 0.8802 | - | - | - | - | - | - |
804
- | 3.6522 | 10500 | 0.1248 | 0.1387 | 0.8806 | 0.8706 | 0.8748 | 0.8789 | 0.8653 | 0.8802 | - | - | - | - | - | - |
805
- | 3.6870 | 10600 | 0.1277 | 0.1389 | 0.8800 | 0.8699 | 0.8742 | 0.8782 | 0.8647 | 0.8796 | - | - | - | - | - | - |
806
- | 3.7217 | 10700 | 0.1219 | 0.1388 | 0.8799 | 0.8697 | 0.8740 | 0.8780 | 0.8645 | 0.8794 | - | - | - | - | - | - |
807
- | 3.7565 | 10800 | 0.1269 | 0.1388 | 0.8803 | 0.8702 | 0.8745 | 0.8785 | 0.8649 | 0.8798 | - | - | - | - | - | - |
808
- | 3.7913 | 10900 | 0.1289 | 0.1387 | 0.8805 | 0.8703 | 0.8746 | 0.8787 | 0.8651 | 0.8800 | - | - | - | - | - | - |
809
- | 3.8261 | 11000 | 0.1234 | 0.1387 | 0.8806 | 0.8704 | 0.8749 | 0.8789 | 0.8653 | 0.8801 | - | - | - | - | - | - |
810
- | 3.8609 | 11100 | 0.1229 | 0.1387 | 0.8806 | 0.8706 | 0.8749 | 0.8788 | 0.8654 | 0.8802 | - | - | - | - | - | - |
811
- | 3.8957 | 11200 | 0.1266 | 0.1387 | 0.8806 | 0.8706 | 0.8749 | 0.8789 | 0.8655 | 0.8801 | - | - | - | - | - | - |
812
- | 3.9304 | 11300 | 0.1253 | 0.1387 | 0.8804 | 0.8704 | 0.8747 | 0.8787 | 0.8653 | 0.8800 | - | - | - | - | - | - |
813
- | 3.9652 | 11400 | 0.1279 | 0.1388 | 0.8804 | 0.8704 | 0.8747 | 0.8787 | 0.8653 | 0.8799 | - | - | - | - | - | - |
814
- | 4.0 | 11500 | 0.1195 | 0.1388 | 0.8804 | 0.8704 | 0.8747 | 0.8786 | 0.8652 | 0.8799 | 0.8623 | 0.8546 | 0.8583 | 0.8624 | 0.8507 | 0.8632 |
815
-
816
- </details>
817
-
818
- ### Framework Versions
819
- - Python: 3.9.16
820
- - Sentence Transformers: 3.0.0
821
- - Transformers: 4.42.0.dev0
822
- - PyTorch: 2.2.2+cu118
823
- - Accelerate: 0.31.0
824
- - Datasets: 2.19.1
825
- - Tokenizers: 0.19.1
826
 
827
  ## Citation
828
 
 
276
  name: Spearman Max
277
  ---
278
 
279
+ # German Semantic V3
280
+
281
+ The successor of German_Semantic_STS_V2 is here!
282
+
283
+ ## Major updates:
284
+
285
+ - **Sequence length: 8192, (16 times more than V2 and other models) => thanks to the alibi implementation of Jina-Team!**
286
+ - **Matryoshka Embeddings: Your embeddings can be sized from 1024 down to 64**
287
+ - **License: Apache 2.0**
288
 
 
289
 
290
  ## Model Details
291
 
292
  ### Model Description
293
  - **Model Type:** Sentence Transformer
294
+ - **Base model:** gbert-large (alibi applied)
295
  - **Maximum Sequence Length:** 8192 tokens
296
  - **Output Dimensionality:** 1024 tokens
297
  - **Similarity Function:** Cosine Similarity
298
  - **Training Dataset:**
299
+ - multiple German datasets
300
+ - **Languages:** de
301
  <!-- - **License:** Unknown -->
302
 
303
  ### Model Sources
 
330
  from sentence_transformers import SentenceTransformer
331
 
332
  # Download from the 🤗 Hub
333
+ model = SentenceTransformer("aari1995/German_Semantic_V3", trust_remote_code=True)
334
  # Run inference
335
  sentences = [
336
  'Eine Flagge weht.',
 
492
 
493
  ## Training Details
494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495
  * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
496
  ```json
497
  {
 
515
  "n_dims_per_step": -1
516
  }
517
  ```
518
+ ## License / Credits and Special thanks to:
519
 
520
+ - to [Jina AI](https://huggingface.co/jinaai) for the model architecture, especially their ALiBi implementation
521
+ - to [deepset](https://huggingface.co/deepset) for gbert-large, which is imho still the greatest German model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
522
 
523
  ## Citation
524