--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - generated_from_trainer metrics: - accuracy model-index: - name: medllama3-v20-with-prefix_prompt results: [] --- # medllama3-v20-with-prefix_prompt This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8028 - Balanced Accuracy: 0.5960 - Accuracy: 0.5457 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Balanced Accuracy | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------:| | 1.7999 | 1.0 | 165 | 0.6813 | 0.6104 | 0.6187 | | 1.7523 | 2.0 | 330 | 0.6623 | 0.5918 | 0.4087 | | 2.1806 | 3.0 | 495 | 0.6799 | 0.6413 | 0.4269 | | 1.3861 | 4.0 | 660 | 0.7232 | 0.6363 | 0.4452 | | 1.6961 | 5.0 | 825 | 0.8122 | 0.6428 | 0.3721 | | 1.4074 | 6.0 | 990 | 0.8685 | 0.6400 | 0.6735 | | 1.3749 | 7.0 | 1155 | 0.6330 | 0.6409 | 0.6598 | | 1.3455 | 8.0 | 1320 | 0.6396 | 0.6594 | 0.4886 | | 1.3391 | 9.0 | 1485 | 0.6102 | 0.6464 | 0.5845 | | 1.4026 | 10.0 | 1650 | 0.6464 | 0.6058 | 0.6142 | | 1.2097 | 11.0 | 1815 | 0.7539 | 0.6151 | 0.6644 | | 1.178 | 12.0 | 1980 | 0.6004 | 0.6539 | 0.6210 | | 1.1876 | 13.0 | 2145 | 0.6344 | 0.6308 | 0.6279 | | 1.1125 | 14.0 | 2310 | 0.6716 | 0.6598 | 0.6507 | | 1.0532 | 15.0 | 2475 | 0.7006 | 0.6501 | 0.5548 | | 1.0158 | 16.0 | 2640 | 0.6975 | 0.6445 | 0.6050 | | 0.9504 | 17.0 | 2805 | 0.8028 | 0.5960 | 0.5457 | ### Framework versions - PEFT 0.14.0 - Transformers 4.48.1 - Pytorch 2.1.0 - Datasets 3.2.0 - Tokenizers 0.21.0