--- license: cc-by-nc-4.0 datasets: - Babelscape/wikineural language: - de - fr - it - rm - multilingual inference: false tags: - named-entity-recognition --- The [SwissBERT](https://huggingface.co./ZurichNLP/swissbert) model fine-tuned on the [WikiNEuRal](https://huggingface.co./datasets/Babelscape/wikineural) dataset for multilingual NER. Supports German, French and Italian as supervised languages and Romansh Grischun as a zero-shot language. ## Usage ```python from transformers import pipeline token_classifier = pipeline( model="ZurichNLP/swissbert-ner", aggregation_strategy="simple", ) ``` ### German example ```python token_classifier.model.set_default_language("de_CH") token_classifier("Mein Name sei Gantenbein.") ``` Output: ``` [{'entity_group': 'PER', 'score': 0.5002625, 'word': 'Gantenbein', 'start': 13, 'end': 24}] ``` ### French example ```python token_classifier.model.set_default_language("fr_CH") token_classifier("J'habite à Lausanne.") ``` Output: ``` [{'entity_group': 'LOC', 'score': 0.99955386, 'word': 'Lausanne', 'start': 10, 'end': 19}] ``` ## Citation ```bibtex @article{vamvas-etal-2023-swissbert, title={Swiss{BERT}: The Multilingual Language Model for Switzerland}, author={Jannis Vamvas and Johannes Gra\"en and Rico Sennrich}, year={2023}, eprint={2303.13310}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2303.13310} } ```