--- library_name: transformers language: - en - fr - de - es - it - pt - ja - ko - zh - ar - el - fa - pl - id - cs - he - hi - nl - ro - ru - tr - uk - vi license: cc-by-nc-4.0 --- **Exllamav2** quant (**exl2** / **6.0 bpw**) made with ExLlamaV2 v0.0.21 Other EXL2 quants: | **Quant** | **Model Size** | **lm_head** | | ----- | ---------- | ------- | |
**[2.2](https://huggingface.co./Zoyd/CohereForAI_aya-23-8B-2_2bpw_exl2)**
|
4898 MB
|
6
| |
**[2.5](https://huggingface.co./Zoyd/CohereForAI_aya-23-8B-2_5bpw_exl2)**
|
5185 MB
|
6
| |
**[3.0](https://huggingface.co./Zoyd/CohereForAI_aya-23-8B-3_0bpw_exl2)**
|
5664 MB
|
6
| |
**[3.5](https://huggingface.co./Zoyd/CohereForAI_aya-23-8B-3_5bpw_exl2)**
|
6142 MB
|
6
| |
**[3.75](https://huggingface.co./Zoyd/CohereForAI_aya-23-8B-3_75bpw_exl2)**
|
6382 MB
|
6
| |
**[4.0](https://huggingface.co./Zoyd/CohereForAI_aya-23-8B-4_0bpw_exl2)**
|
6620 MB
|
6
| |
**[4.25](https://huggingface.co./Zoyd/CohereForAI_aya-23-8B-4_25bpw_exl2)**
|
6860 MB
|
6
| |
**[5.0](https://huggingface.co./Zoyd/CohereForAI_aya-23-8B-5_0bpw_exl2)**
|
7576 MB
|
6
| |
**[6.0](https://huggingface.co./Zoyd/CohereForAI_aya-23-8B-6_0bpw_exl2)**
|
8742 MB
|
8
| |
**[6.5](https://huggingface.co./Zoyd/CohereForAI_aya-23-8B-6_5bpw_exl2)**
|
9212 MB
|
8
| |
**[8.0](https://huggingface.co./Zoyd/CohereForAI_aya-23-8B-8_0bpw_exl2)**
|
9691 MB
|
8
| # Model Card for Aya-23-8B ## Model Summary Aya 23 is an open weights research release of an instruction fine-tuned model with highly advanced multilingual capabilities. Aya 23 focuses on pairing a highly performant pre-trained [Command family](https://huggingface.co./CohereForAI/c4ai-command-r-plus) of models with the recently released [Aya Collection](https://huggingface.co./datasets/CohereForAI/aya_collection). The result is a powerful multilingual large language model serving 23 languages. This model card corresponds to the 8-billion version of the Aya 23 model. We also released a 35-billion version which you can find [here](https://huggingface.co./CohereForAI/aya-23-35B). We cover 23 languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese Developed by: [Cohere For AI](https://cohere.for.ai) and [Cohere](https://cohere.com/) - Point of Contact: Cohere For AI: [cohere.for.ai](https://cohere.for.ai/) - License: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy) - Model: aya-23-8B - Model Size: 8 billion parameters **Try Aya 23** You can try out Aya 23 (35B) before downloading the weights in our hosted Hugging Face Space [here](https://huggingface.co./spaces/CohereForAI/aya-23). ### Usage Please install transformers from the source repository that includes the necessary changes for this model ```python # pip install transformers==4.41.1 from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "CohereForAI/aya-23-8B" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # Format message with the command-r-plus chat template messages = [{"role": "user", "content": "Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz"}] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") ## <|START_OF_TURN_TOKEN|><|USER_TOKEN|>Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> gen_tokens = model.generate( input_ids, max_new_tokens=100, do_sample=True, temperature=0.3, ) gen_text = tokenizer.decode(gen_tokens[0]) print(gen_text) ``` ### Example Notebook [This notebook](https://huggingface.co./CohereForAI/aya-23-8B/blob/main/Aya_23_notebook.ipynb) showcases a detailed use of Aya 23 (8B) including inference and fine-tuning with [QLoRA](https://huggingface.co./blog/4bit-transformers-bitsandbytes). ## Model Details **Input**: Models input text only. **Output**: Models generate text only. **Model Architecture**: Aya-23-8B is an auto-regressive language model that uses an optimized transformer architecture. After pretraining, this model is fine-tuned (IFT) to follow human instructions. **Languages covered**: The model is particularly optimized for multilinguality and supports the following languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese **Context length**: 8192 ### Evaluation multilingual benchmarks average win rates Please refer to the [Aya 23 technical report](https://cohere.com/research/papers/aya-command-23-8b-and-35b-technical-report-2024-05-23) for further details about the base model, data, instruction tuning, and evaluation. ### Model Card Contact For errors or additional questions about details in this model card, contact info@for.ai. ### Terms of Use We hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant multilingual model to researchers all over the world. This model is governed by a [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license) License with an acceptable use addendum, and also requires adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy). ### Try the model today You can try Aya 23 in the Cohere [playground](https://dashboard.cohere.com/playground/chat) here. You can also use it in our dedicated Hugging Face Space [here](https://huggingface.co./spaces/CohereForAI/aya-23). ### Citation info ```bibtex @misc{aya23technicalreport, title={Aya 23: Open Weight Releases to Further Multilingual Progress}, author={Viraat Aryabumi, John Dang, Dwarak Talupuru, Saurabh Dash, David Cairuz, Hangyu Lin, Bharat Venkitesh, Madeline Smith, Kelly Marchisio, Sebastian Ruder, Acyr Locatelli, Julia Kreutzer, Nick Frosst, Phil Blunsom, Marzieh Fadaee, Ahmet Üstün, and Sara Hooker}, url={https://cohere.com/research/papers/aya-command-23-8b-and-35b-technical-report-2024-05-23}, year={2024} } ```