File size: 2,294 Bytes
549779e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: bsd-3-clause
base_model: pszemraj/led-base-book-summary
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: device
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# device
This model is a fine-tuned version of [pszemraj/led-base-book-summary](https://huggingface.co./pszemraj/led-base-book-summary) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0247
- Rouge1: 0.6269
- Rouge2: 0.3921
- Rougel: 0.5261
- Rougelsum: 0.5266
- Gen Len: 67.5584
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 274 | 1.0933 | 0.5918 | 0.3356 | 0.4785 | 0.4788 | 72.0547 |
| 1.1731 | 2.0 | 548 | 1.0177 | 0.5985 | 0.3525 | 0.4902 | 0.4906 | 68.5055 |
| 1.1731 | 3.0 | 822 | 0.9976 | 0.6063 | 0.3603 | 0.4982 | 0.4982 | 69.7263 |
| 0.7216 | 4.0 | 1096 | 0.9922 | 0.6113 | 0.3735 | 0.5081 | 0.5084 | 68.1861 |
| 0.7216 | 5.0 | 1370 | 0.9957 | 0.6193 | 0.3826 | 0.5216 | 0.5217 | 65.4617 |
| 0.5252 | 6.0 | 1644 | 1.0127 | 0.6252 | 0.3877 | 0.5231 | 0.5236 | 68.0584 |
| 0.5252 | 7.0 | 1918 | 1.0221 | 0.6252 | 0.3897 | 0.5246 | 0.5246 | 67.5931 |
| 0.4079 | 8.0 | 2192 | 1.0247 | 0.6269 | 0.3921 | 0.5261 | 0.5266 | 67.5584 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|