--- library_name: transformers language: - zh license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper_largev3_motor_zh results: [] --- # Whisper_largev3_motor_zh This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1577 - Wer: 675.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 25 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.2805 | 0.0302 | 100 | 0.2447 | 47.4359 | | 0.2094 | 0.0603 | 200 | 0.1964 | 472.3157 | | 0.1738 | 0.0905 | 300 | 0.1827 | 424.5192 | | 0.2119 | 0.1206 | 400 | 0.1679 | 489.3630 | | 0.1629 | 0.1508 | 500 | 0.1577 | 675.0 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3