ZhengPeng7
commited on
Commit
·
4e60c70
1
Parent(s):
f6b7155
Add inference endpoint feature in HF model page.
Browse files- README.md +46 -1
- birefnet.py +30 -27
- handler.py +132 -0
- requirements.txt +18 -0
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
library_name:
|
3 |
tags:
|
4 |
- background-removal
|
5 |
- mask-generation
|
@@ -141,6 +141,51 @@ plt.show()
|
|
141 |
|
142 |
```
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
> This BiRefNet for standard dichotomous image segmentation (DIS) is trained on **DIS-TR** and validated on **DIS-TEs and DIS-VD**.
|
146 |
|
|
|
1 |
---
|
2 |
+
library_name: BiRefNet
|
3 |
tags:
|
4 |
- background-removal
|
5 |
- mask-generation
|
|
|
141 |
|
142 |
```
|
143 |
|
144 |
+
### 2. Use inference endpoint locally:
|
145 |
+
> You may need to click the *deploy* and set up the endpoint by yourself, which would make some costs.
|
146 |
+
```
|
147 |
+
import requests
|
148 |
+
import base64
|
149 |
+
from io import BytesIO
|
150 |
+
from PIL import Image
|
151 |
+
|
152 |
+
|
153 |
+
YOUR_HF_TOKEN = 'xxx'
|
154 |
+
API_URL = "xxx"
|
155 |
+
headers = {
|
156 |
+
"Authorization": "Bearer {}".format(YOUR_HF_TOKEN)
|
157 |
+
}
|
158 |
+
|
159 |
+
def base64_to_bytes(base64_string):
|
160 |
+
# Remove the data URI prefix if present
|
161 |
+
if "data:image" in base64_string:
|
162 |
+
base64_string = base64_string.split(",")[1]
|
163 |
+
|
164 |
+
# Decode the Base64 string into bytes
|
165 |
+
image_bytes = base64.b64decode(base64_string)
|
166 |
+
return image_bytes
|
167 |
+
|
168 |
+
def bytes_to_base64(image_bytes):
|
169 |
+
# Create a BytesIO object to handle the image data
|
170 |
+
image_stream = BytesIO(image_bytes)
|
171 |
+
|
172 |
+
# Open the image using Pillow (PIL)
|
173 |
+
image = Image.open(image_stream)
|
174 |
+
return image
|
175 |
+
|
176 |
+
def query(payload):
|
177 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
178 |
+
return response.json()
|
179 |
+
|
180 |
+
output = query({
|
181 |
+
"inputs": "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg",
|
182 |
+
"parameters": {}
|
183 |
+
})
|
184 |
+
|
185 |
+
output_image = bytes_to_base64(base64_to_bytes(output))
|
186 |
+
output_image
|
187 |
+
```
|
188 |
+
|
189 |
|
190 |
> This BiRefNet for standard dichotomous image segmentation (DIS) is trained on **DIS-TR** and validated on **DIS-TEs and DIS-VD**.
|
191 |
|
birefnet.py
CHANGED
@@ -7,7 +7,7 @@ import math
|
|
7 |
class Config():
|
8 |
def __init__(self) -> None:
|
9 |
# PATH settings
|
10 |
-
self.sys_home_dir = os.path.expanduser('~')
|
11 |
|
12 |
# TASK settings
|
13 |
self.task = ['DIS5K', 'COD', 'HRSOD', 'DIS5K+HRSOD+HRS10K', 'P3M-10k'][0]
|
@@ -615,6 +615,7 @@ from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
|
615 |
|
616 |
# config = Config()
|
617 |
|
|
|
618 |
class Mlp(nn.Module):
|
619 |
""" Multilayer perceptron."""
|
620 |
|
@@ -739,7 +740,8 @@ class WindowAttention(nn.Module):
|
|
739 |
attn = (q @ k.transpose(-2, -1))
|
740 |
|
741 |
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
742 |
-
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
|
|
|
743 |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
744 |
attn = attn + relative_position_bias.unsqueeze(0)
|
745 |
|
@@ -974,8 +976,9 @@ class BasicLayer(nn.Module):
|
|
974 |
"""
|
975 |
|
976 |
# calculate attention mask for SW-MSA
|
977 |
-
|
978 |
-
|
|
|
979 |
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
980 |
h_slices = (slice(0, -self.window_size),
|
981 |
slice(-self.window_size, -self.shift_size),
|
@@ -1961,6 +1964,7 @@ import torch.nn as nn
|
|
1961 |
import torch.nn.functional as F
|
1962 |
from kornia.filters import laplacian
|
1963 |
from transformers import PreTrainedModel
|
|
|
1964 |
|
1965 |
# from config import Config
|
1966 |
# from dataset import class_labels_TR_sorted
|
@@ -1974,13 +1978,24 @@ from transformers import PreTrainedModel
|
|
1974 |
from .BiRefNet_config import BiRefNetConfig
|
1975 |
|
1976 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1977 |
class BiRefNet(
|
1978 |
PreTrainedModel
|
1979 |
):
|
1980 |
config_class = BiRefNetConfig
|
1981 |
def __init__(self, bb_pretrained=True, config=BiRefNetConfig()):
|
1982 |
-
super(BiRefNet, self).__init__(
|
1983 |
-
bb_pretrained = config.bb_pretrained
|
1984 |
self.config = Config()
|
1985 |
self.epoch = 1
|
1986 |
self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained)
|
@@ -2124,18 +2139,6 @@ class Decoder(nn.Module):
|
|
2124 |
self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
2125 |
self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
2126 |
|
2127 |
-
def get_patches_batch(self, x, p):
|
2128 |
-
_size_h, _size_w = p.shape[2:]
|
2129 |
-
patches_batch = []
|
2130 |
-
for idx in range(x.shape[0]):
|
2131 |
-
columns_x = torch.split(x[idx], split_size_or_sections=_size_w, dim=-1)
|
2132 |
-
patches_x = []
|
2133 |
-
for column_x in columns_x:
|
2134 |
-
patches_x += [p.unsqueeze(0) for p in torch.split(column_x, split_size_or_sections=_size_h, dim=-2)]
|
2135 |
-
patch_sample = torch.cat(patches_x, dim=1)
|
2136 |
-
patches_batch.append(patch_sample)
|
2137 |
-
return torch.cat(patches_batch, dim=0)
|
2138 |
-
|
2139 |
def forward(self, features):
|
2140 |
if self.training and self.config.out_ref:
|
2141 |
outs_gdt_pred = []
|
@@ -2146,10 +2149,10 @@ class Decoder(nn.Module):
|
|
2146 |
outs = []
|
2147 |
|
2148 |
if self.config.dec_ipt:
|
2149 |
-
patches_batch =
|
2150 |
x4 = torch.cat((x4, self.ipt_blk5(F.interpolate(patches_batch, size=x4.shape[2:], mode='bilinear', align_corners=True))), 1)
|
2151 |
p4 = self.decoder_block4(x4)
|
2152 |
-
m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None
|
2153 |
if self.config.out_ref:
|
2154 |
p4_gdt = self.gdt_convs_4(p4)
|
2155 |
if self.training:
|
@@ -2167,10 +2170,10 @@ class Decoder(nn.Module):
|
|
2167 |
_p3 = _p4 + self.lateral_block4(x3)
|
2168 |
|
2169 |
if self.config.dec_ipt:
|
2170 |
-
patches_batch =
|
2171 |
_p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
|
2172 |
p3 = self.decoder_block3(_p3)
|
2173 |
-
m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None
|
2174 |
if self.config.out_ref:
|
2175 |
p3_gdt = self.gdt_convs_3(p3)
|
2176 |
if self.training:
|
@@ -2193,10 +2196,10 @@ class Decoder(nn.Module):
|
|
2193 |
_p2 = _p3 + self.lateral_block3(x2)
|
2194 |
|
2195 |
if self.config.dec_ipt:
|
2196 |
-
patches_batch =
|
2197 |
_p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
|
2198 |
p2 = self.decoder_block2(_p2)
|
2199 |
-
m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None
|
2200 |
if self.config.out_ref:
|
2201 |
p2_gdt = self.gdt_convs_2(p2)
|
2202 |
if self.training:
|
@@ -2214,17 +2217,17 @@ class Decoder(nn.Module):
|
|
2214 |
_p1 = _p2 + self.lateral_block2(x1)
|
2215 |
|
2216 |
if self.config.dec_ipt:
|
2217 |
-
patches_batch =
|
2218 |
_p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
|
2219 |
_p1 = self.decoder_block1(_p1)
|
2220 |
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
|
2221 |
|
2222 |
if self.config.dec_ipt:
|
2223 |
-
patches_batch =
|
2224 |
_p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
|
2225 |
p1_out = self.conv_out1(_p1)
|
2226 |
|
2227 |
-
if self.config.ms_supervision:
|
2228 |
outs.append(m4)
|
2229 |
outs.append(m3)
|
2230 |
outs.append(m2)
|
|
|
7 |
class Config():
|
8 |
def __init__(self) -> None:
|
9 |
# PATH settings
|
10 |
+
self.sys_home_dir = os.path.expanduser('~') # Make up your file system as: SYS_HOME_DIR/codes/dis/BiRefNet, SYS_HOME_DIR/datasets/dis/xx, SYS_HOME_DIR/weights/xx
|
11 |
|
12 |
# TASK settings
|
13 |
self.task = ['DIS5K', 'COD', 'HRSOD', 'DIS5K+HRSOD+HRS10K', 'P3M-10k'][0]
|
|
|
615 |
|
616 |
# config = Config()
|
617 |
|
618 |
+
|
619 |
class Mlp(nn.Module):
|
620 |
""" Multilayer perceptron."""
|
621 |
|
|
|
740 |
attn = (q @ k.transpose(-2, -1))
|
741 |
|
742 |
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
743 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
|
744 |
+
) # Wh*Ww, Wh*Ww, nH
|
745 |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
746 |
attn = attn + relative_position_bias.unsqueeze(0)
|
747 |
|
|
|
976 |
"""
|
977 |
|
978 |
# calculate attention mask for SW-MSA
|
979 |
+
# Turn int to torch.tensor for the compatiability with torch.compile in PyTorch 2.5.
|
980 |
+
Hp = torch.ceil(torch.tensor(H) / self.window_size).to(torch.int64) * self.window_size
|
981 |
+
Wp = torch.ceil(torch.tensor(W) / self.window_size).to(torch.int64) * self.window_size
|
982 |
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
983 |
h_slices = (slice(0, -self.window_size),
|
984 |
slice(-self.window_size, -self.shift_size),
|
|
|
1964 |
import torch.nn.functional as F
|
1965 |
from kornia.filters import laplacian
|
1966 |
from transformers import PreTrainedModel
|
1967 |
+
from einops import rearrange
|
1968 |
|
1969 |
# from config import Config
|
1970 |
# from dataset import class_labels_TR_sorted
|
|
|
1978 |
from .BiRefNet_config import BiRefNetConfig
|
1979 |
|
1980 |
|
1981 |
+
def image2patches(image, grid_h=2, grid_w=2, patch_ref=None, transformation='b c (hg h) (wg w) -> (b hg wg) c h w'):
|
1982 |
+
if patch_ref is not None:
|
1983 |
+
grid_h, grid_w = image.shape[-2] // patch_ref.shape[-2], image.shape[-1] // patch_ref.shape[-1]
|
1984 |
+
patches = rearrange(image, transformation, hg=grid_h, wg=grid_w)
|
1985 |
+
return patches
|
1986 |
+
|
1987 |
+
def patches2image(patches, grid_h=2, grid_w=2, patch_ref=None, transformation='(b hg wg) c h w -> b c (hg h) (wg w)'):
|
1988 |
+
if patch_ref is not None:
|
1989 |
+
grid_h, grid_w = patch_ref.shape[-2] // patches[0].shape[-2], patch_ref.shape[-1] // patches[0].shape[-1]
|
1990 |
+
image = rearrange(patches, transformation, hg=grid_h, wg=grid_w)
|
1991 |
+
return image
|
1992 |
+
|
1993 |
class BiRefNet(
|
1994 |
PreTrainedModel
|
1995 |
):
|
1996 |
config_class = BiRefNetConfig
|
1997 |
def __init__(self, bb_pretrained=True, config=BiRefNetConfig()):
|
1998 |
+
super(BiRefNet, self).__init__()
|
|
|
1999 |
self.config = Config()
|
2000 |
self.epoch = 1
|
2001 |
self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained)
|
|
|
2139 |
self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
2140 |
self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
2141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2142 |
def forward(self, features):
|
2143 |
if self.training and self.config.out_ref:
|
2144 |
outs_gdt_pred = []
|
|
|
2149 |
outs = []
|
2150 |
|
2151 |
if self.config.dec_ipt:
|
2152 |
+
patches_batch = image2patches(x, patch_ref=x4, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
|
2153 |
x4 = torch.cat((x4, self.ipt_blk5(F.interpolate(patches_batch, size=x4.shape[2:], mode='bilinear', align_corners=True))), 1)
|
2154 |
p4 = self.decoder_block4(x4)
|
2155 |
+
m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision and self.training else None
|
2156 |
if self.config.out_ref:
|
2157 |
p4_gdt = self.gdt_convs_4(p4)
|
2158 |
if self.training:
|
|
|
2170 |
_p3 = _p4 + self.lateral_block4(x3)
|
2171 |
|
2172 |
if self.config.dec_ipt:
|
2173 |
+
patches_batch = image2patches(x, patch_ref=_p3, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
|
2174 |
_p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
|
2175 |
p3 = self.decoder_block3(_p3)
|
2176 |
+
m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision and self.training else None
|
2177 |
if self.config.out_ref:
|
2178 |
p3_gdt = self.gdt_convs_3(p3)
|
2179 |
if self.training:
|
|
|
2196 |
_p2 = _p3 + self.lateral_block3(x2)
|
2197 |
|
2198 |
if self.config.dec_ipt:
|
2199 |
+
patches_batch = image2patches(x, patch_ref=_p2, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
|
2200 |
_p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
|
2201 |
p2 = self.decoder_block2(_p2)
|
2202 |
+
m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision and self.training else None
|
2203 |
if self.config.out_ref:
|
2204 |
p2_gdt = self.gdt_convs_2(p2)
|
2205 |
if self.training:
|
|
|
2217 |
_p1 = _p2 + self.lateral_block2(x1)
|
2218 |
|
2219 |
if self.config.dec_ipt:
|
2220 |
+
patches_batch = image2patches(x, patch_ref=_p1, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
|
2221 |
_p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
|
2222 |
_p1 = self.decoder_block1(_p1)
|
2223 |
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
|
2224 |
|
2225 |
if self.config.dec_ipt:
|
2226 |
+
patches_batch = image2patches(x, patch_ref=_p1, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
|
2227 |
_p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
|
2228 |
p1_out = self.conv_out1(_p1)
|
2229 |
|
2230 |
+
if self.config.ms_supervision and self.training:
|
2231 |
outs.append(m4)
|
2232 |
outs.append(m3)
|
2233 |
outs.append(m2)
|
handler.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# These HF deployment codes refer to https://huggingface.co/not-lain/BiRefNet/raw/main/handler.py.
|
2 |
+
from typing import Dict, List, Any, Tuple
|
3 |
+
import os
|
4 |
+
import requests
|
5 |
+
from io import BytesIO
|
6 |
+
import cv2
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
+
import torch
|
10 |
+
from torchvision import transforms
|
11 |
+
from transformers import AutoModelForImageSegmentation
|
12 |
+
|
13 |
+
torch.set_float32_matmul_precision(["high", "highest"][0])
|
14 |
+
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
|
17 |
+
### image_proc.py
|
18 |
+
def refine_foreground(image, mask, r=90):
|
19 |
+
if mask.size != image.size:
|
20 |
+
mask = mask.resize(image.size)
|
21 |
+
image = np.array(image) / 255.0
|
22 |
+
mask = np.array(mask) / 255.0
|
23 |
+
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
|
24 |
+
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
|
25 |
+
return image_masked
|
26 |
+
|
27 |
+
|
28 |
+
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
|
29 |
+
# Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation
|
30 |
+
alpha = alpha[:, :, None]
|
31 |
+
F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r)
|
32 |
+
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
|
33 |
+
|
34 |
+
|
35 |
+
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
|
36 |
+
if isinstance(image, Image.Image):
|
37 |
+
image = np.array(image) / 255.0
|
38 |
+
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
|
39 |
+
|
40 |
+
blurred_FA = cv2.blur(F * alpha, (r, r))
|
41 |
+
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
|
42 |
+
|
43 |
+
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
|
44 |
+
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
|
45 |
+
F = blurred_F + alpha * \
|
46 |
+
(image - alpha * blurred_F - (1 - alpha) * blurred_B)
|
47 |
+
F = np.clip(F, 0, 1)
|
48 |
+
return F, blurred_B
|
49 |
+
|
50 |
+
|
51 |
+
class ImagePreprocessor():
|
52 |
+
def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None:
|
53 |
+
self.transform_image = transforms.Compose([
|
54 |
+
transforms.Resize(resolution),
|
55 |
+
transforms.ToTensor(),
|
56 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
57 |
+
])
|
58 |
+
|
59 |
+
def proc(self, image: Image.Image) -> torch.Tensor:
|
60 |
+
image = self.transform_image(image)
|
61 |
+
return image
|
62 |
+
|
63 |
+
usage_to_weights_file = {
|
64 |
+
'General': 'BiRefNet',
|
65 |
+
'General-Lite': 'BiRefNet_lite',
|
66 |
+
'General-Lite-2K': 'BiRefNet_lite-2K',
|
67 |
+
'General-reso_512': 'BiRefNet-reso_512',
|
68 |
+
'Matting': 'BiRefNet-matting',
|
69 |
+
'Portrait': 'BiRefNet-portrait',
|
70 |
+
'DIS': 'BiRefNet-DIS5K',
|
71 |
+
'HRSOD': 'BiRefNet-HRSOD',
|
72 |
+
'COD': 'BiRefNet-COD',
|
73 |
+
'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs',
|
74 |
+
'General-legacy': 'BiRefNet-legacy'
|
75 |
+
}
|
76 |
+
|
77 |
+
# Choose the version of BiRefNet here.
|
78 |
+
usage = 'General'
|
79 |
+
|
80 |
+
# Set resolution
|
81 |
+
if usage in ['General-Lite-2K']:
|
82 |
+
resolution = (2560, 1440)
|
83 |
+
elif usage in ['General-reso_512']:
|
84 |
+
resolution = (512, 512)
|
85 |
+
else:
|
86 |
+
resolution = (1024, 1024)
|
87 |
+
|
88 |
+
|
89 |
+
class EndpointHandler():
|
90 |
+
def __init__(self, path=''):
|
91 |
+
self.birefnet = AutoModelForImageSegmentation.from_pretrained(
|
92 |
+
'/'.join(('zhengpeng7', usage_to_weights_file[usage])), trust_remote_code=True
|
93 |
+
)
|
94 |
+
self.birefnet.to(device)
|
95 |
+
self.birefnet.eval()
|
96 |
+
|
97 |
+
def __call__(self, data: Dict[str, Any]):
|
98 |
+
"""
|
99 |
+
data args:
|
100 |
+
inputs (:obj: `str`)
|
101 |
+
date (:obj: `str`)
|
102 |
+
Return:
|
103 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
104 |
+
"""
|
105 |
+
print('data["inputs"] = ', data["inputs"])
|
106 |
+
image_src = data["inputs"]
|
107 |
+
if isinstance(image_src, str):
|
108 |
+
if os.path.isfile(image_src):
|
109 |
+
image_ori = Image.open(image_src)
|
110 |
+
else:
|
111 |
+
response = requests.get(image_src)
|
112 |
+
image_data = BytesIO(response.content)
|
113 |
+
image_ori = Image.open(image_data)
|
114 |
+
else:
|
115 |
+
image_ori = Image.fromarray(image_src)
|
116 |
+
|
117 |
+
image = image_ori.convert('RGB')
|
118 |
+
# Preprocess the image
|
119 |
+
image_preprocessor = ImagePreprocessor(resolution=tuple(resolution))
|
120 |
+
image_proc = image_preprocessor.proc(image)
|
121 |
+
image_proc = image_proc.unsqueeze(0)
|
122 |
+
|
123 |
+
# Prediction
|
124 |
+
with torch.no_grad():
|
125 |
+
preds = self.birefnet(image_proc.to(device))[-1].sigmoid().cpu()
|
126 |
+
pred = preds[0].squeeze()
|
127 |
+
|
128 |
+
# Show Results
|
129 |
+
pred_pil = transforms.ToPILImage()(pred)
|
130 |
+
image_masked = refine_foreground(image, pred_pil)
|
131 |
+
image_masked.putalpha(pred_pil.resize(image.size))
|
132 |
+
return image_masked
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu118
|
2 |
+
torch==2.0.1
|
3 |
+
--extra-index-url https://download.pytorch.org/whl/cu118
|
4 |
+
torchvision==0.15.2
|
5 |
+
numpy<2
|
6 |
+
opencv-python
|
7 |
+
timm
|
8 |
+
scipy
|
9 |
+
scikit-image
|
10 |
+
kornia
|
11 |
+
einops
|
12 |
+
|
13 |
+
tqdm
|
14 |
+
prettytable
|
15 |
+
|
16 |
+
transformers
|
17 |
+
huggingface-hub>0.25
|
18 |
+
accelerate
|