# These HF deployment codes refer to https://huggingface.co./not-lain/BiRefNet/raw/main/handler.py. from typing import Dict, List, Any import base64 from io import BytesIO import torch from loadimg import load_img from torchvision import transforms from transformers import AutoModelForImageSegmentation torch.set_float32_matmul_precision(["high", "highest"][0]) device = "cuda" if torch.cuda.is_available() else "cpu" ### image_proc.py def refine_foreground(image, mask, r=90): if mask.size != image.size: mask = mask.resize(image.size) image = np.array(image) / 255.0 mask = np.array(mask) / 255.0 estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r) image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8)) return image_masked def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90): # Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation alpha = alpha[:, :, None] F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r) return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0] def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90): if isinstance(image, Image.Image): image = np.array(image) / 255.0 blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None] blurred_FA = cv2.blur(F * alpha, (r, r)) blurred_F = blurred_FA / (blurred_alpha + 1e-5) blurred_B1A = cv2.blur(B * (1 - alpha), (r, r)) blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5) F = blurred_F + alpha * \ (image - alpha * blurred_F - (1 - alpha) * blurred_B) F = np.clip(F, 0, 1) return F, blurred_B class ImagePreprocessor(): def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None: self.transform_image = transforms.Compose([ transforms.Resize(resolution), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) def proc(self, image: Image.Image) -> torch.Tensor: image = self.transform_image(image) return image usage_to_weights_file = { 'General': 'BiRefNet', 'General-Lite': 'BiRefNet_lite', 'General-Lite-2K': 'BiRefNet_lite-2K', 'General-reso_512': 'BiRefNet-reso_512', 'Matting': 'BiRefNet-matting', 'Portrait': 'BiRefNet-portrait', 'DIS': 'BiRefNet-DIS5K', 'HRSOD': 'BiRefNet-HRSOD', 'COD': 'BiRefNet-COD', 'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs', 'General-legacy': 'BiRefNet-legacy' } birefnet = AutoModelForImageSegmentation.from_pretrained('/'.join(('zhengpeng7', usage_to_weights_file['General'])), trust_remote_code=True) birefnet.to(device) birefnet.eval() # Set resolution if weights_file in ['General-Lite-2K']: resolution = (2560, 1440) elif weights_file in ['General-reso_512']: resolution = (512, 512) else: resolution = (1024, 1024) class EndpointHandler(): def __init__(self, path=""): self.birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) self.birefnet.to(device) def __call__(self, data: Dict[str, Any]): """ data args: inputs (:obj: `str`) date (:obj: `str`) Return: A :obj:`list` | `dict`: will be serialized and returned """ print('data["inputs"] = ', data["inputs"]) image_src = data["inputs"] if isinstance(image_src, str): if os.path.isfile(image_src): image_ori = Image.open(image_src) else: response = requests.get(image_src) image_data = BytesIO(response.content) image_ori = Image.open(image_data) else: image_ori = Image.fromarray(image_src) image = image_ori.convert('RGB') # Preprocess the image image_preprocessor = ImagePreprocessor(resolution=tuple(resolution)) image_proc = image_preprocessor.proc(image) image_proc = image_proc.unsqueeze(0) # Prediction with torch.no_grad(): preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu() pred = preds[0].squeeze() # Show Results pred_pil = transforms.ToPILImage()(pred) image_masked = refine_foreground(image, pred_pil) image_masked.putalpha(pred_pil.resize(image.size)) return image_masked