PicoAudio / picoaudio /runner /controllable_train.py
ZeyuXie's picture
Upload 96 files
09d8de6 verified
import os
import math
import json
import numpy as np
import pandas as pd
import random
import logging
import argparse
import diffusers
import transformers
from transformers import SchedulerType, get_scheduler
from tqdm.auto import tqdm
from datetime import datetime
import torch
from torch.utils.data import Dataset, DataLoader
import datasets
from datasets import load_dataset
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
import sys
import utils.torch_tools as torch_tools
import models.controllable_diffusion as ConDiffusion
import models.controllable_dataset as ConDataset
from data.filter_data import get_event_list
logger = get_logger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a diffusion model for text to audio generation task.")
parser.add_argument(
"--train_file", '-f', type=str, default="data/meta_data/train.json"
)
parser.add_argument(
"--batch_size", '-b', type=int, default=1,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--learning_rate", '-lr', type=float, default=3e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--num_epochs", '-e', type=int, default=40,
help="Total number of training epochs to perform."
)
parser.add_argument(
"--output_dir", '-o', type=str, default=None,
help="Where to store the final model."
)
parser.add_argument(
"--model_class", '-m', type=str, default="ClapText_Onset_2_Audio_Diffusion", #TextOnset2AudioDiffusion
help="name of model_class"
)
parser.add_argument(
"--dataset_class", '-dc', type=str, default="Clap_Onset_2_Audio_Dataset", #Text_Onset2AudioDataset
help="name of model_class"
)
parser.add_argument(
"--duration", '-d', type=float, default=10,
help="Audio duration."
)
parser.add_argument(
"--num_examples", '-n', type=int, default=-1,
help="How many examples to use for training.",
)
parser.add_argument(
"--scheduler_name", type=str,
default="stabilityai/stable-diffusion-2-1",
help="Scheduler identifier.",
)
parser.add_argument(
"--unet_model_config", type=str, default="utils/configs/frequency.json",
help="UNet model config json path.",
)
parser.add_argument(
"--text_column", type=str, default="captions",
help="The name of the column in the datasets containing the input texts.",
)
parser.add_argument(
"--onset_column", type=str, default="onset",
help="The name of the column in the datasets containing the osnet.",
)
parser.add_argument(
"--audio_column", type=str, default="location",
help="The name of the column in the datasets containing the audio paths.",
)
if True:
parser.add_argument(
"--augment", action="store_true", default=False,
help="Augment training data.",
)
parser.add_argument(
"--uncondition", action="store_true", default=False,
help="10% uncondition for training.",
)
parser.add_argument(
"--weight_decay", type=float, default=1e-8,
help="Weight decay to use."
)
parser.add_argument(
"--snr_gamma", type=float,
#default=None,
default=5.0,
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
"More details here: https://arxiv.org/abs/2303.09556.",
)
parser.add_argument(
"--max_train_steps", type=int, default=None,
help="Total number of training steps to perform. If provided, overrides num_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps", type=int, default=4,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type", type=SchedulerType, default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0,
help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--adam_beta1", type=float, default=0.9,
help="The beta1 parameter for the Adam optimizer."
)
parser.add_argument(
"--adam_beta2", type=float, default=0.999,
help="The beta2 parameter for the Adam optimizer."
)
parser.add_argument(
"--adam_weight_decay", type=float, default=1e-2,
help="Weight decay to use."
)
parser.add_argument(
"--adam_epsilon", type=float, default=1e-08,
help="Epsilon value for the Adam optimizer"
)
parser.add_argument(
"--seed", type=int, default=0,
help="A seed for reproducible training."
)
parser.add_argument(
"--checkpointing_steps", type=str, default="best",
help="Whether the various states should be saved at the end of every 'epoch' or 'best' whenever validation loss decreases.",
)
parser.add_argument(
"--save_every", type=int, default=40,
help="Save model after every how many epochs when checkpointing_steps is set to best."
)
parser.add_argument(
"--resume_from_checkpoint", type=str, default=None,
help="If the training should continue from a local checkpoint folder.",
)
parser.add_argument(
"--with_tracking", action="store_true",
help="Whether to enable experiment trackers for logging.",
)
parser.add_argument(
"--report_to", type=str, default="all",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations.'
"Only applicable when `--with_tracking` is passed."
),
)
args = parser.parse_args()
return args
def main():
args = parse_args()
args.event_list = get_event_list()
print(args)
accelerator_log_kwargs = {}
if args.with_tracking:
accelerator_log_kwargs["log_with"] = args.report_to
accelerator_log_kwargs["logging_dir"] = args.output_dir
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, **accelerator_log_kwargs)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
datasets.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
#if args.seed is not None:
set_seed(args.seed)
seed = args.seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Handle output directory creation and wandb tracking
if accelerator.is_main_process:
if args.output_dir is None or args.output_dir == "":
args.output_dir = f"ckpts/{args.model_class}_{args.dataset_class}/base"
elif args.output_dir is not None:
args.output_dir = f"ckpts/{args.model_class}_{args.dataset_class}/" + args.output_dir
os.makedirs(args.output_dir, exist_ok=True)
with open("{}/summary.jsonl".format(args.output_dir), "w") as f:
f.write(json.dumps(dict(vars(args))) + "\n\n")
accelerator.project_configuration.automatic_checkpoint_naming = False
accelerator.wait_for_everyone()
# Initialize models
pretrained_model_name = "audioldm-s-full"
vae, stft = ConDiffusion.build_pretrained_models(pretrained_model_name)
#vae, stft, clap, _ = build_vae_stft_clap_models(pretrained_model_name)
model = getattr(ConDiffusion, args.model_class)(
scheduler_name=args.scheduler_name, unet_model_config_path=args.unet_model_config,
snr_gamma=args.snr_gamma, uncondition=args.uncondition,
)
# Get the datasets
extension = args.train_file.split(".")[-1]
raw_datasets = load_dataset(extension, data_files={"train": args.train_file})
with accelerator.main_process_first():
train_dataset = getattr(ConDataset, args.dataset_class)(raw_datasets["train"], args)
accelerator.print("Num instances in train: {}".format(train_dataset.get_num_instances()))
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, collate_fn=train_dataset.collate_fn)
# Optimizer
optimizer_parameters = model.parameters()
if hasattr(model, "text_encoder"):
for param in model.text_encoder.parameters():
param.requires_grad = False
model.text_encoder.eval()
optimizer_parameters = model.unet.parameters()
accelerator.print("Optimizing UNet parameters.")
num_trainable_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
accelerator.print("Num trainable parameters: {}".format(num_trainable_parameters))
optimizer = torch.optim.AdamW(
optimizer_parameters, lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
# Prepare everything with our `accelerator`.
vae, stft, model, optimizer, lr_scheduler = accelerator.prepare(
vae, stft, model, optimizer, lr_scheduler
)
train_dataloader = accelerator.prepare(
train_dataloader
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if args.with_tracking:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("text_to_audio_diffusion", experiment_config)
# Train!
total_batch_size = args.batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_epochs}")
logger.info(f" Instantaneous batch size per device = {args.batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
starting_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.load_state(args.resume_from_checkpoint)
# path = os.path.basename(args.resume_from_checkpoint)
accelerator.print(f"Resumed from local checkpoint: {args.resume_from_checkpoint}")
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
# path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Duration of the audio clips in seconds
duration, best_loss, best_epoch = args.duration, np.inf, 0
for epoch in range(starting_epoch, args.num_epochs):
model.train()
total_loss = 0
logger.info(f"train epoch {epoch} begin!")
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(model):
device = model.device
_, onset, event_info, audios, _, _ = batch #idx, onset, event_info, audios, caption, onset_str
target_length = int(duration * 102.4)
with torch.no_grad():
unwrapped_vae = accelerator.unwrap_model(vae)
mel, _, waveform = torch_tools.wav_to_fbank(audios, target_length, stft)
mel = mel.unsqueeze(1).to(device)
true_latent = unwrapped_vae.get_first_stage_encoding(unwrapped_vae.encode_first_stage(mel))
loss = model({"latent":true_latent, "onset":onset, "event_info":event_info}, validation_mode=False)
total_loss += loss.detach().float()
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
completed_steps += 1
if completed_steps >= args.max_train_steps:
break
logger.info(f"train epoch {epoch} finish!")
model.uncondition = False
if accelerator.is_main_process:
result = {}
result["epoch"] = epoch,
result["step"] = completed_steps
result["train_loss"] = round(total_loss.item()/len(train_dataloader), 4)
if result["train_loss"] < best_loss:
best_loss = result["train_loss"]
best_epoch = epoch
if args.checkpointing_steps == "best":
accelerator.save(accelerator.unwrap_model(model).state_dict(), f"{args.output_dir}/best.pt")
# Save all states -> continue training
# accelerator.save_state("{}/{}".format(args.output_dir, "best"))
result["best_eopch"] = best_epoch
logger.info(result)
result["time"] = datetime.now().strftime("%y-%m-%d-%H-%M-%S")
with open("{}/summary.jsonl".format(args.output_dir), "a") as f:
f.write(json.dumps(result) + "\n\n")
if args.with_tracking:
accelerator.log(result, step=completed_steps)
if __name__ == "__main__":
main()