|
import os |
|
import math |
|
import json |
|
import numpy as np |
|
import pandas as pd |
|
import random |
|
import logging |
|
import argparse |
|
import diffusers |
|
import transformers |
|
from transformers import SchedulerType, get_scheduler |
|
from tqdm.auto import tqdm |
|
from datetime import datetime |
|
|
|
import torch |
|
from torch.utils.data import Dataset, DataLoader |
|
import datasets |
|
from datasets import load_dataset |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import set_seed |
|
|
|
import sys |
|
import utils.torch_tools as torch_tools |
|
import models.controllable_diffusion as ConDiffusion |
|
import models.controllable_dataset as ConDataset |
|
from data.filter_data import get_event_list |
|
|
|
logger = get_logger(__name__) |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Finetune a diffusion model for text to audio generation task.") |
|
parser.add_argument( |
|
"--train_file", '-f', type=str, default="data/meta_data/train.json" |
|
) |
|
parser.add_argument( |
|
"--batch_size", '-b', type=int, default=1, |
|
help="Batch size (per device) for the training dataloader.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", '-lr', type=float, default=3e-5, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--num_epochs", '-e', type=int, default=40, |
|
help="Total number of training epochs to perform." |
|
) |
|
parser.add_argument( |
|
"--output_dir", '-o', type=str, default=None, |
|
help="Where to store the final model." |
|
) |
|
parser.add_argument( |
|
"--model_class", '-m', type=str, default="ClapText_Onset_2_Audio_Diffusion", |
|
help="name of model_class" |
|
) |
|
parser.add_argument( |
|
"--dataset_class", '-dc', type=str, default="Clap_Onset_2_Audio_Dataset", |
|
help="name of model_class" |
|
) |
|
parser.add_argument( |
|
"--duration", '-d', type=float, default=10, |
|
help="Audio duration." |
|
) |
|
parser.add_argument( |
|
"--num_examples", '-n', type=int, default=-1, |
|
help="How many examples to use for training.", |
|
) |
|
parser.add_argument( |
|
"--scheduler_name", type=str, |
|
default="stabilityai/stable-diffusion-2-1", |
|
help="Scheduler identifier.", |
|
) |
|
parser.add_argument( |
|
"--unet_model_config", type=str, default="utils/configs/frequency.json", |
|
help="UNet model config json path.", |
|
) |
|
parser.add_argument( |
|
"--text_column", type=str, default="captions", |
|
help="The name of the column in the datasets containing the input texts.", |
|
) |
|
parser.add_argument( |
|
"--onset_column", type=str, default="onset", |
|
help="The name of the column in the datasets containing the osnet.", |
|
) |
|
parser.add_argument( |
|
"--audio_column", type=str, default="location", |
|
help="The name of the column in the datasets containing the audio paths.", |
|
) |
|
if True: |
|
parser.add_argument( |
|
"--augment", action="store_true", default=False, |
|
help="Augment training data.", |
|
) |
|
parser.add_argument( |
|
"--uncondition", action="store_true", default=False, |
|
help="10% uncondition for training.", |
|
) |
|
parser.add_argument( |
|
"--weight_decay", type=float, default=1e-8, |
|
help="Weight decay to use." |
|
) |
|
parser.add_argument( |
|
"--snr_gamma", type=float, |
|
|
|
default=5.0, |
|
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " |
|
"More details here: https://arxiv.org/abs/2303.09556.", |
|
) |
|
parser.add_argument( |
|
"--max_train_steps", type=int, default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_epochs.", |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", type=int, default=4, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler_type", type=SchedulerType, default="linear", |
|
help="The scheduler type to use.", |
|
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], |
|
) |
|
parser.add_argument( |
|
"--num_warmup_steps", type=int, default=0, |
|
help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--adam_beta1", type=float, default=0.9, |
|
help="The beta1 parameter for the Adam optimizer." |
|
) |
|
parser.add_argument( |
|
"--adam_beta2", type=float, default=0.999, |
|
help="The beta2 parameter for the Adam optimizer." |
|
) |
|
parser.add_argument( |
|
"--adam_weight_decay", type=float, default=1e-2, |
|
help="Weight decay to use." |
|
) |
|
parser.add_argument( |
|
"--adam_epsilon", type=float, default=1e-08, |
|
help="Epsilon value for the Adam optimizer" |
|
) |
|
parser.add_argument( |
|
"--seed", type=int, default=0, |
|
help="A seed for reproducible training." |
|
) |
|
parser.add_argument( |
|
"--checkpointing_steps", type=str, default="best", |
|
help="Whether the various states should be saved at the end of every 'epoch' or 'best' whenever validation loss decreases.", |
|
) |
|
parser.add_argument( |
|
"--save_every", type=int, default=40, |
|
help="Save model after every how many epochs when checkpointing_steps is set to best." |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", type=str, default=None, |
|
help="If the training should continue from a local checkpoint folder.", |
|
) |
|
parser.add_argument( |
|
"--with_tracking", action="store_true", |
|
help="Whether to enable experiment trackers for logging.", |
|
) |
|
parser.add_argument( |
|
"--report_to", type=str, default="all", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,' |
|
' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations.' |
|
"Only applicable when `--with_tracking` is passed." |
|
), |
|
) |
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
args.event_list = get_event_list() |
|
print(args) |
|
accelerator_log_kwargs = {} |
|
|
|
if args.with_tracking: |
|
accelerator_log_kwargs["log_with"] = args.report_to |
|
accelerator_log_kwargs["logging_dir"] = args.output_dir |
|
|
|
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, **accelerator_log_kwargs) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
|
|
datasets.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
|
|
|
|
|
|
set_seed(args.seed) |
|
seed = args.seed |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
if torch.cuda.is_available(): |
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is None or args.output_dir == "": |
|
args.output_dir = f"ckpts/{args.model_class}_{args.dataset_class}/base" |
|
elif args.output_dir is not None: |
|
args.output_dir = f"ckpts/{args.model_class}_{args.dataset_class}/" + args.output_dir |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
with open("{}/summary.jsonl".format(args.output_dir), "w") as f: |
|
f.write(json.dumps(dict(vars(args))) + "\n\n") |
|
|
|
accelerator.project_configuration.automatic_checkpoint_naming = False |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
|
|
pretrained_model_name = "audioldm-s-full" |
|
vae, stft = ConDiffusion.build_pretrained_models(pretrained_model_name) |
|
|
|
|
|
model = getattr(ConDiffusion, args.model_class)( |
|
scheduler_name=args.scheduler_name, unet_model_config_path=args.unet_model_config, |
|
snr_gamma=args.snr_gamma, uncondition=args.uncondition, |
|
) |
|
|
|
|
|
extension = args.train_file.split(".")[-1] |
|
raw_datasets = load_dataset(extension, data_files={"train": args.train_file}) |
|
with accelerator.main_process_first(): |
|
train_dataset = getattr(ConDataset, args.dataset_class)(raw_datasets["train"], args) |
|
accelerator.print("Num instances in train: {}".format(train_dataset.get_num_instances())) |
|
|
|
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, collate_fn=train_dataset.collate_fn) |
|
|
|
|
|
optimizer_parameters = model.parameters() |
|
if hasattr(model, "text_encoder"): |
|
for param in model.text_encoder.parameters(): |
|
param.requires_grad = False |
|
model.text_encoder.eval() |
|
optimizer_parameters = model.unet.parameters() |
|
accelerator.print("Optimizing UNet parameters.") |
|
|
|
num_trainable_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
accelerator.print("Num trainable parameters: {}".format(num_trainable_parameters)) |
|
|
|
optimizer = torch.optim.AdamW( |
|
optimizer_parameters, lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
name=args.lr_scheduler_type, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.num_warmup_steps * args.gradient_accumulation_steps, |
|
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, |
|
) |
|
|
|
|
|
vae, stft, model, optimizer, lr_scheduler = accelerator.prepare( |
|
vae, stft, model, optimizer, lr_scheduler |
|
) |
|
train_dataloader = accelerator.prepare( |
|
train_dataloader |
|
) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_epochs * num_update_steps_per_epoch |
|
|
|
args.num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if args.with_tracking: |
|
experiment_config = vars(args) |
|
|
|
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value |
|
accelerator.init_trackers("text_to_audio_diffusion", experiment_config) |
|
|
|
|
|
total_batch_size = args.batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num Epochs = {args.num_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
|
|
|
|
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) |
|
|
|
completed_steps = 0 |
|
starting_epoch = 0 |
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": |
|
accelerator.load_state(args.resume_from_checkpoint) |
|
|
|
accelerator.print(f"Resumed from local checkpoint: {args.resume_from_checkpoint}") |
|
else: |
|
|
|
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] |
|
dirs.sort(key=os.path.getctime) |
|
|
|
|
|
|
|
duration, best_loss, best_epoch = args.duration, np.inf, 0 |
|
|
|
for epoch in range(starting_epoch, args.num_epochs): |
|
model.train() |
|
total_loss = 0 |
|
logger.info(f"train epoch {epoch} begin!") |
|
for step, batch in enumerate(train_dataloader): |
|
with accelerator.accumulate(model): |
|
device = model.device |
|
|
|
_, onset, event_info, audios, _, _ = batch |
|
target_length = int(duration * 102.4) |
|
with torch.no_grad(): |
|
unwrapped_vae = accelerator.unwrap_model(vae) |
|
mel, _, waveform = torch_tools.wav_to_fbank(audios, target_length, stft) |
|
mel = mel.unsqueeze(1).to(device) |
|
true_latent = unwrapped_vae.get_first_stage_encoding(unwrapped_vae.encode_first_stage(mel)) |
|
|
|
loss = model({"latent":true_latent, "onset":onset, "event_info":event_info}, validation_mode=False) |
|
total_loss += loss.detach().float() |
|
accelerator.backward(loss) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
completed_steps += 1 |
|
|
|
if completed_steps >= args.max_train_steps: |
|
break |
|
logger.info(f"train epoch {epoch} finish!") |
|
model.uncondition = False |
|
|
|
if accelerator.is_main_process: |
|
result = {} |
|
result["epoch"] = epoch, |
|
result["step"] = completed_steps |
|
result["train_loss"] = round(total_loss.item()/len(train_dataloader), 4) |
|
|
|
if result["train_loss"] < best_loss: |
|
best_loss = result["train_loss"] |
|
best_epoch = epoch |
|
if args.checkpointing_steps == "best": |
|
accelerator.save(accelerator.unwrap_model(model).state_dict(), f"{args.output_dir}/best.pt") |
|
|
|
|
|
|
|
result["best_eopch"] = best_epoch |
|
logger.info(result) |
|
result["time"] = datetime.now().strftime("%y-%m-%d-%H-%M-%S") |
|
|
|
with open("{}/summary.jsonl".format(args.output_dir), "a") as f: |
|
f.write(json.dumps(result) + "\n\n") |
|
|
|
if args.with_tracking: |
|
accelerator.log(result, step=completed_steps) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|