File size: 2,315 Bytes
f85ae04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
tags:
- merge
- model_stock
- DarkStock
- Aspire
- Storm
- Llama3
- DarkEnigma
- instruction-following
- creative-writing
- coding
- roleplaying
- long-form-generation
- research
- bfloat16
- llama-cpp
- gguf-my-repo
base_model: ZeroXClem/Llama3.1-DarkStorm-Aspire-8B
library_name: transformers
language:
- en
datasets:
- openbuddy/openbuddy-llama3.1-8b-v22.2-131k
- THUDM/LongWriter-llama3.1-8b
- aifeifei798/DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored
pipeline_tag: text-generation
---
# ZeroXClem/Llama3.1-DarkStorm-Aspire-8B-Q5_K_M-GGUF
This model was converted to GGUF format from [`ZeroXClem/Llama3.1-DarkStorm-Aspire-8B`](https://huggingface.co./ZeroXClem/Llama3.1-DarkStorm-Aspire-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co./ZeroXClem/Llama3.1-DarkStorm-Aspire-8B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo ZeroXClem/Llama3.1-DarkStorm-Aspire-8B-Q5_K_M-GGUF --hf-file llama3.1-darkstorm-aspire-8b-q5_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo ZeroXClem/Llama3.1-DarkStorm-Aspire-8B-Q5_K_M-GGUF --hf-file llama3.1-darkstorm-aspire-8b-q5_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo ZeroXClem/Llama3.1-DarkStorm-Aspire-8B-Q5_K_M-GGUF --hf-file llama3.1-darkstorm-aspire-8b-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo ZeroXClem/Llama3.1-DarkStorm-Aspire-8B-Q5_K_M-GGUF --hf-file llama3.1-darkstorm-aspire-8b-q5_k_m.gguf -c 2048
```
|