File size: 2,151 Bytes
f3c5eaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: flan-t5-large-da-multiwoz_500
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-large-da-multiwoz_500

This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co./google/flan-t5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3826
- Accuracy: 37.4297
- Num: 3689
- Gen Len: 16.4142

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 24
- seed: 1799
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Num  | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----:|:-------:|
| 1.3527        | 0.47  | 200  | 0.5645          | 25.0872  | 3689 | 12.6606 |
| 0.6276        | 0.93  | 400  | 0.4722          | 31.0261  | 3689 | 15.3814 |
| 0.539         | 1.4   | 600  | 0.4367          | 34.1584  | 3689 | 15.8056 |
| 0.5087        | 1.86  | 800  | 0.4164          | 35.1677  | 3689 | 15.6544 |
| 0.4633        | 2.33  | 1000 | 0.4112          | 34.1615  | 3689 | 15.7842 |
| 0.463         | 2.79  | 1200 | 0.3961          | 36.5992  | 3689 | 16.4803 |
| 0.4437        | 3.26  | 1400 | 0.3895          | 36.7915  | 3689 | 16.5259 |
| 0.4328        | 3.72  | 1600 | 0.3874          | 36.7043  | 3689 | 16.2385 |
| 0.4189        | 4.19  | 1800 | 0.3826          | 37.4297  | 3689 | 16.4142 |
| 0.4239        | 4.65  | 2000 | 0.3804          | 37.2685  | 3689 | 16.2329 |


### Framework versions

- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.5.1
- Tokenizers 0.12.1