--- license: apache-2.0 base_model: Zannatul/final_withAug-google-vit-base-patch16-384-in21k-batch_16_epoch_4_classes_24 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: google-vit-base-patch16-384-in21k-batch_16_epoch_4_classes_24_final_withAug_12th_May results: - task: name: Image Classification type: image-classification dataset: name: bengali_food_images type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9904891304347826 --- # google-vit-base-patch16-384-in21k-batch_16_epoch_4_classes_24_final_withAug_12th_May This model is a fine-tuned version of [Zannatul/final_withAug-google-vit-base-patch16-384-in21k-batch_16_epoch_4_classes_24](https://huggingface.co./Zannatul/final_withAug-google-vit-base-patch16-384-in21k-batch_16_epoch_4_classes_24) on the bengali_food_images dataset. It achieves the following results on the evaluation set: - Loss: 0.0282 - Accuracy: 0.9905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.269 | 0.09 | 100 | 0.4001 | 0.8723 | | 0.1829 | 0.17 | 200 | 0.0928 | 0.9728 | | 0.1737 | 0.26 | 300 | 0.1615 | 0.9457 | | 0.2096 | 0.34 | 400 | 0.4138 | 0.9022 | | 0.1855 | 0.43 | 500 | 0.1814 | 0.9511 | | 0.0901 | 0.51 | 600 | 0.1435 | 0.9579 | | 0.1406 | 0.6 | 700 | 0.1468 | 0.9620 | | 0.136 | 0.68 | 800 | 0.1532 | 0.9565 | | 0.0666 | 0.77 | 900 | 0.1177 | 0.9674 | | 0.1145 | 0.85 | 1000 | 0.1794 | 0.9497 | | 0.0865 | 0.94 | 1100 | 0.1113 | 0.9688 | | 0.0612 | 1.02 | 1200 | 0.1270 | 0.9688 | | 0.0038 | 1.11 | 1300 | 0.0724 | 0.9783 | | 0.0006 | 1.19 | 1400 | 0.0715 | 0.9851 | | 0.0007 | 1.28 | 1500 | 0.0616 | 0.9796 | | 0.0579 | 1.36 | 1600 | 0.1259 | 0.9715 | | 0.0009 | 1.45 | 1700 | 0.1028 | 0.9755 | | 0.0295 | 1.53 | 1800 | 0.0637 | 0.9823 | | 0.0484 | 1.62 | 1900 | 0.0893 | 0.9783 | | 0.0371 | 1.71 | 2000 | 0.0637 | 0.9837 | | 0.0359 | 1.79 | 2100 | 0.0389 | 0.9878 | | 0.0006 | 1.88 | 2200 | 0.0750 | 0.9823 | | 0.0189 | 1.96 | 2300 | 0.0451 | 0.9851 | | 0.0442 | 2.05 | 2400 | 0.0772 | 0.9796 | | 0.0006 | 2.13 | 2500 | 0.1988 | 0.9620 | | 0.006 | 2.22 | 2600 | 0.0659 | 0.9864 | | 0.0093 | 2.3 | 2700 | 0.0754 | 0.9810 | | 0.0008 | 2.39 | 2800 | 0.0800 | 0.9783 | | 0.0003 | 2.47 | 2900 | 0.0617 | 0.9864 | | 0.0094 | 2.56 | 3000 | 0.0736 | 0.9837 | | 0.0001 | 2.64 | 3100 | 0.0538 | 0.9823 | | 0.001 | 2.73 | 3200 | 0.0606 | 0.9878 | | 0.0001 | 2.81 | 3300 | 0.0433 | 0.9864 | | 0.0001 | 2.9 | 3400 | 0.0583 | 0.9823 | | 0.0001 | 2.98 | 3500 | 0.0388 | 0.9905 | | 0.0001 | 3.07 | 3600 | 0.0408 | 0.9891 | | 0.0001 | 3.15 | 3700 | 0.0375 | 0.9891 | | 0.0001 | 3.24 | 3800 | 0.0367 | 0.9878 | | 0.0001 | 3.32 | 3900 | 0.0355 | 0.9878 | | 0.0001 | 3.41 | 4000 | 0.0395 | 0.9878 | | 0.0001 | 3.5 | 4100 | 0.0382 | 0.9878 | | 0.0001 | 3.58 | 4200 | 0.0399 | 0.9891 | | 0.0001 | 3.67 | 4300 | 0.0396 | 0.9891 | | 0.0072 | 3.75 | 4400 | 0.0355 | 0.9905 | | 0.0001 | 3.84 | 4500 | 0.0284 | 0.9918 | | 0.0001 | 3.92 | 4600 | 0.0282 | 0.9905 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2