Model save
Browse files- README.md +121 -0
- config.json +76 -0
- model.safetensors +3 -0
- preprocessor_config.json +36 -0
- runs/May11_19-53-00_9479ebf6a298/events.out.tfevents.1715457189.9479ebf6a298.34.0 +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-base-patch16-384
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: google-vit-base-patch16-384-in21k-batch_16_epoch_4_classes_24_final_withAug_12th_May
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.9904891304347826
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# google-vit-base-patch16-384-in21k-batch_16_epoch_4_classes_24_final_withAug_12th_May
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.0282
|
36 |
+
- Accuracy: 0.9905
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.0002
|
56 |
+
- train_batch_size: 16
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 4
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| 0.269 | 0.09 | 100 | 0.4001 | 0.8723 |
|
69 |
+
| 0.1829 | 0.17 | 200 | 0.0928 | 0.9728 |
|
70 |
+
| 0.1737 | 0.26 | 300 | 0.1615 | 0.9457 |
|
71 |
+
| 0.2096 | 0.34 | 400 | 0.4138 | 0.9022 |
|
72 |
+
| 0.1855 | 0.43 | 500 | 0.1814 | 0.9511 |
|
73 |
+
| 0.0901 | 0.51 | 600 | 0.1435 | 0.9579 |
|
74 |
+
| 0.1406 | 0.6 | 700 | 0.1468 | 0.9620 |
|
75 |
+
| 0.136 | 0.68 | 800 | 0.1532 | 0.9565 |
|
76 |
+
| 0.0666 | 0.77 | 900 | 0.1177 | 0.9674 |
|
77 |
+
| 0.1145 | 0.85 | 1000 | 0.1794 | 0.9497 |
|
78 |
+
| 0.0865 | 0.94 | 1100 | 0.1113 | 0.9688 |
|
79 |
+
| 0.0612 | 1.02 | 1200 | 0.1270 | 0.9688 |
|
80 |
+
| 0.0038 | 1.11 | 1300 | 0.0724 | 0.9783 |
|
81 |
+
| 0.0006 | 1.19 | 1400 | 0.0715 | 0.9851 |
|
82 |
+
| 0.0007 | 1.28 | 1500 | 0.0616 | 0.9796 |
|
83 |
+
| 0.0579 | 1.36 | 1600 | 0.1259 | 0.9715 |
|
84 |
+
| 0.0009 | 1.45 | 1700 | 0.1028 | 0.9755 |
|
85 |
+
| 0.0295 | 1.53 | 1800 | 0.0637 | 0.9823 |
|
86 |
+
| 0.0484 | 1.62 | 1900 | 0.0893 | 0.9783 |
|
87 |
+
| 0.0371 | 1.71 | 2000 | 0.0637 | 0.9837 |
|
88 |
+
| 0.0359 | 1.79 | 2100 | 0.0389 | 0.9878 |
|
89 |
+
| 0.0006 | 1.88 | 2200 | 0.0750 | 0.9823 |
|
90 |
+
| 0.0189 | 1.96 | 2300 | 0.0451 | 0.9851 |
|
91 |
+
| 0.0442 | 2.05 | 2400 | 0.0772 | 0.9796 |
|
92 |
+
| 0.0006 | 2.13 | 2500 | 0.1988 | 0.9620 |
|
93 |
+
| 0.006 | 2.22 | 2600 | 0.0659 | 0.9864 |
|
94 |
+
| 0.0093 | 2.3 | 2700 | 0.0754 | 0.9810 |
|
95 |
+
| 0.0008 | 2.39 | 2800 | 0.0800 | 0.9783 |
|
96 |
+
| 0.0003 | 2.47 | 2900 | 0.0617 | 0.9864 |
|
97 |
+
| 0.0094 | 2.56 | 3000 | 0.0736 | 0.9837 |
|
98 |
+
| 0.0001 | 2.64 | 3100 | 0.0538 | 0.9823 |
|
99 |
+
| 0.001 | 2.73 | 3200 | 0.0606 | 0.9878 |
|
100 |
+
| 0.0001 | 2.81 | 3300 | 0.0433 | 0.9864 |
|
101 |
+
| 0.0001 | 2.9 | 3400 | 0.0583 | 0.9823 |
|
102 |
+
| 0.0001 | 2.98 | 3500 | 0.0388 | 0.9905 |
|
103 |
+
| 0.0001 | 3.07 | 3600 | 0.0408 | 0.9891 |
|
104 |
+
| 0.0001 | 3.15 | 3700 | 0.0375 | 0.9891 |
|
105 |
+
| 0.0001 | 3.24 | 3800 | 0.0367 | 0.9878 |
|
106 |
+
| 0.0001 | 3.32 | 3900 | 0.0355 | 0.9878 |
|
107 |
+
| 0.0001 | 3.41 | 4000 | 0.0395 | 0.9878 |
|
108 |
+
| 0.0001 | 3.5 | 4100 | 0.0382 | 0.9878 |
|
109 |
+
| 0.0001 | 3.58 | 4200 | 0.0399 | 0.9891 |
|
110 |
+
| 0.0001 | 3.67 | 4300 | 0.0396 | 0.9891 |
|
111 |
+
| 0.0072 | 3.75 | 4400 | 0.0355 | 0.9905 |
|
112 |
+
| 0.0001 | 3.84 | 4500 | 0.0284 | 0.9918 |
|
113 |
+
| 0.0001 | 3.92 | 4600 | 0.0282 | 0.9905 |
|
114 |
+
|
115 |
+
|
116 |
+
### Framework versions
|
117 |
+
|
118 |
+
- Transformers 4.39.3
|
119 |
+
- Pytorch 2.1.2
|
120 |
+
- Datasets 2.18.0
|
121 |
+
- Tokenizers 0.15.2
|
config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google/vit-base-patch16-384",
|
3 |
+
"architectures": [
|
4 |
+
"ViTForImageClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"encoder_stride": 16,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.0,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"id2label": {
|
12 |
+
"0": "Bhapa Pitha(\u09ad\u09be\u09aa\u09be \u09aa\u09bf\u09a0\u09be)",
|
13 |
+
"1": "Biriyani(\u09ac\u09bf\u09b0\u09bf\u09df\u09be\u09a8\u09bf)",
|
14 |
+
"10": "Khichuri(\u0996\u09bf\u099a\u09c1\u09a1\u09bc\u09bf)",
|
15 |
+
"11": "Malpua Pitha(\u09ae\u09be\u09b2\u09aa\u09c1\u09df\u09be \u09aa\u09bf\u09a0\u09be)",
|
16 |
+
"12": "Mustard Hilsa(\u09b8\u09b0\u09b7\u09c7 \u0987\u09b2\u09bf\u09b6)",
|
17 |
+
"13": "Nakshi Pitha(\u09a8\u0995\u09b6\u09bf \u09aa\u09bf\u09a0\u09be)",
|
18 |
+
"14": "Panta Ilish(\u09aa\u09be\u09a8\u09cd\u09a4\u09be \u0987\u09b2\u09bf\u09b6)",
|
19 |
+
"15": "Patishapta Pitha(\u09aa\u09be\u099f\u09bf\u09b8\u09be\u09aa\u099f\u09be)",
|
20 |
+
"16": "Prawn Malai Curry(\u099a\u09bf\u0982\u09dc\u09bf \u09ae\u09be\u09b2\u09be\u0987\u0995\u09be\u09b0\u09c0)",
|
21 |
+
"17": "Rasgulla(\u09b0\u09b8\u0997\u09cb\u09b2\u09cd\u09b2\u09be)",
|
22 |
+
"18": "Rose Cookies(\u09ab\u09c1\u09b2\u099d\u09c1\u09b0\u09bf \u09aa\u09bf\u09a0\u09be)",
|
23 |
+
"19": "Roshmalai(\u09b0\u09b8\u09ae\u09be\u09b2\u09be\u0987)",
|
24 |
+
"2": "Chicken Pulao(\u09ae\u09cb\u09b0\u0997 \u09aa\u09cb\u09b2\u09be\u0993)",
|
25 |
+
"20": "Shahi Tukra(\u09b6\u09be\u09b9\u09bf \u099f\u09c1\u0995\u09b0\u09be)",
|
26 |
+
"21": "Shingara(\u09b8\u09bf\u0999\u09cd\u0997\u09be\u09b0\u09be)",
|
27 |
+
"22": "Sweet Yogurt(\u09ae\u09bf\u09b7\u09cd\u099f\u09bf \u09a6\u0987)",
|
28 |
+
"23": "Tehari(\u09a4\u09c7\u09b9\u09be\u09b0\u09bf)",
|
29 |
+
"3": "Chickpease Bhuna(\u099b\u09cb\u09b2\u09be\u09ad\u09c1\u09a8\u09be)",
|
30 |
+
"4": "Egg Curry(\u09a1\u09bf\u09ae\u09ad\u09c1\u09a8\u09be)",
|
31 |
+
"5": "Falooda(\u09ab\u09be\u09b2\u09c1\u09a6\u09be)",
|
32 |
+
"6": "Fuchka(\u09ab\u09c1\u099a\u0995\u09be)",
|
33 |
+
"7": "Haleem(\u09b9\u09be\u09b2\u09bf\u09ae)",
|
34 |
+
"8": "Jalebi(\u099c\u09bf\u09b2\u09be\u09aa\u09c0)",
|
35 |
+
"9": "Kala Bhuna(\u0995\u09be\u09b2\u09be \u09ad\u09c1\u09a8\u09be)"
|
36 |
+
},
|
37 |
+
"image_size": 384,
|
38 |
+
"initializer_range": 0.02,
|
39 |
+
"intermediate_size": 3072,
|
40 |
+
"label2id": {
|
41 |
+
"Bhapa Pitha(\u09ad\u09be\u09aa\u09be \u09aa\u09bf\u09a0\u09be)": "0",
|
42 |
+
"Biriyani(\u09ac\u09bf\u09b0\u09bf\u09df\u09be\u09a8\u09bf)": "1",
|
43 |
+
"Chicken Pulao(\u09ae\u09cb\u09b0\u0997 \u09aa\u09cb\u09b2\u09be\u0993)": "2",
|
44 |
+
"Chickpease Bhuna(\u099b\u09cb\u09b2\u09be\u09ad\u09c1\u09a8\u09be)": "3",
|
45 |
+
"Egg Curry(\u09a1\u09bf\u09ae\u09ad\u09c1\u09a8\u09be)": "4",
|
46 |
+
"Falooda(\u09ab\u09be\u09b2\u09c1\u09a6\u09be)": "5",
|
47 |
+
"Fuchka(\u09ab\u09c1\u099a\u0995\u09be)": "6",
|
48 |
+
"Haleem(\u09b9\u09be\u09b2\u09bf\u09ae)": "7",
|
49 |
+
"Jalebi(\u099c\u09bf\u09b2\u09be\u09aa\u09c0)": "8",
|
50 |
+
"Kala Bhuna(\u0995\u09be\u09b2\u09be \u09ad\u09c1\u09a8\u09be)": "9",
|
51 |
+
"Khichuri(\u0996\u09bf\u099a\u09c1\u09a1\u09bc\u09bf)": "10",
|
52 |
+
"Malpua Pitha(\u09ae\u09be\u09b2\u09aa\u09c1\u09df\u09be \u09aa\u09bf\u09a0\u09be)": "11",
|
53 |
+
"Mustard Hilsa(\u09b8\u09b0\u09b7\u09c7 \u0987\u09b2\u09bf\u09b6)": "12",
|
54 |
+
"Nakshi Pitha(\u09a8\u0995\u09b6\u09bf \u09aa\u09bf\u09a0\u09be)": "13",
|
55 |
+
"Panta Ilish(\u09aa\u09be\u09a8\u09cd\u09a4\u09be \u0987\u09b2\u09bf\u09b6)": "14",
|
56 |
+
"Patishapta Pitha(\u09aa\u09be\u099f\u09bf\u09b8\u09be\u09aa\u099f\u09be)": "15",
|
57 |
+
"Prawn Malai Curry(\u099a\u09bf\u0982\u09dc\u09bf \u09ae\u09be\u09b2\u09be\u0987\u0995\u09be\u09b0\u09c0)": "16",
|
58 |
+
"Rasgulla(\u09b0\u09b8\u0997\u09cb\u09b2\u09cd\u09b2\u09be)": "17",
|
59 |
+
"Rose Cookies(\u09ab\u09c1\u09b2\u099d\u09c1\u09b0\u09bf \u09aa\u09bf\u09a0\u09be)": "18",
|
60 |
+
"Roshmalai(\u09b0\u09b8\u09ae\u09be\u09b2\u09be\u0987)": "19",
|
61 |
+
"Shahi Tukra(\u09b6\u09be\u09b9\u09bf \u099f\u09c1\u0995\u09b0\u09be)": "20",
|
62 |
+
"Shingara(\u09b8\u09bf\u0999\u09cd\u0997\u09be\u09b0\u09be)": "21",
|
63 |
+
"Sweet Yogurt(\u09ae\u09bf\u09b7\u09cd\u099f\u09bf \u09a6\u0987)": "22",
|
64 |
+
"Tehari(\u09a4\u09c7\u09b9\u09be\u09b0\u09bf)": "23"
|
65 |
+
},
|
66 |
+
"layer_norm_eps": 1e-12,
|
67 |
+
"model_type": "vit",
|
68 |
+
"num_attention_heads": 12,
|
69 |
+
"num_channels": 3,
|
70 |
+
"num_hidden_layers": 12,
|
71 |
+
"patch_size": 16,
|
72 |
+
"problem_type": "single_label_classification",
|
73 |
+
"qkv_bias": true,
|
74 |
+
"torch_dtype": "float32",
|
75 |
+
"transformers_version": "4.39.3"
|
76 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38c18353d34a739b39a17466db73ad30d176529606931ffb397cd9e71df698b7
|
3 |
+
size 344459008
|
preprocessor_config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_valid_processor_keys": [
|
3 |
+
"images",
|
4 |
+
"do_resize",
|
5 |
+
"size",
|
6 |
+
"resample",
|
7 |
+
"do_rescale",
|
8 |
+
"rescale_factor",
|
9 |
+
"do_normalize",
|
10 |
+
"image_mean",
|
11 |
+
"image_std",
|
12 |
+
"return_tensors",
|
13 |
+
"data_format",
|
14 |
+
"input_data_format"
|
15 |
+
],
|
16 |
+
"do_normalize": true,
|
17 |
+
"do_rescale": true,
|
18 |
+
"do_resize": true,
|
19 |
+
"image_mean": [
|
20 |
+
0.5,
|
21 |
+
0.5,
|
22 |
+
0.5
|
23 |
+
],
|
24 |
+
"image_processor_type": "ViTFeatureExtractor",
|
25 |
+
"image_std": [
|
26 |
+
0.5,
|
27 |
+
0.5,
|
28 |
+
0.5
|
29 |
+
],
|
30 |
+
"resample": 2,
|
31 |
+
"rescale_factor": 0.00392156862745098,
|
32 |
+
"size": {
|
33 |
+
"height": 384,
|
34 |
+
"width": 384
|
35 |
+
}
|
36 |
+
}
|
runs/May11_19-53-00_9479ebf6a298/events.out.tfevents.1715457189.9479ebf6a298.34.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a1c17adcc4d28a8d9be928c226ffbfd8242c0de56df2c1c5a391e6a9923c2fa
|
3 |
+
size 122491
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27df82ea84a8bb0f54cce5d7c37b06864817e7462ff867bd5c4a2d74793e0b41
|
3 |
+
size 5112
|