--- license: mit base_model: prajjwal1/bert-tiny tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: Server-S04 results: [] --- # Server-S04 This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co./prajjwal1/bert-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6591 - Accuracy: 0.62 - F1: 0.6205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 0.01 | 50 | 0.6891 | 0.54 | 0.3787 | | No log | 0.01 | 100 | 0.6893 | 0.54 | 0.3787 | | No log | 0.02 | 150 | 0.6876 | 0.54 | 0.3787 | | No log | 0.03 | 200 | 0.6978 | 0.48 | 0.4231 | | No log | 0.03 | 250 | 0.6899 | 0.5 | 0.4878 | | No log | 0.04 | 300 | 0.6825 | 0.57 | 0.5577 | | No log | 0.04 | 350 | 0.6782 | 0.62 | 0.6205 | | No log | 0.05 | 400 | 0.6692 | 0.6 | 0.5981 | | No log | 0.06 | 450 | 0.6688 | 0.58 | 0.5664 | | 0.6773 | 0.06 | 500 | 0.6692 | 0.6 | 0.5966 | | 0.6773 | 0.07 | 550 | 0.6642 | 0.62 | 0.62 | | 0.6773 | 0.08 | 600 | 0.6577 | 0.65 | 0.6505 | | 0.6773 | 0.08 | 650 | 0.6618 | 0.6 | 0.5992 | | 0.6773 | 0.09 | 700 | 0.6617 | 0.62 | 0.62 | | 0.6773 | 0.09 | 750 | 0.6641 | 0.62 | 0.6205 | | 0.6773 | 0.1 | 800 | 0.6573 | 0.62 | 0.62 | | 0.6773 | 0.11 | 850 | 0.6625 | 0.61 | 0.6096 | | 0.6773 | 0.11 | 900 | 0.6625 | 0.63 | 0.6303 | | 0.6773 | 0.12 | 950 | 0.6632 | 0.62 | 0.6181 | | 0.6414 | 0.13 | 1000 | 0.6613 | 0.62 | 0.6206 | | 0.6414 | 0.13 | 1050 | 0.6594 | 0.62 | 0.6206 | | 0.6414 | 0.14 | 1100 | 0.6607 | 0.62 | 0.6206 | | 0.6414 | 0.14 | 1150 | 0.6580 | 0.62 | 0.6205 | | 0.6414 | 0.15 | 1200 | 0.6628 | 0.62 | 0.6205 | | 0.6414 | 0.16 | 1250 | 0.6591 | 0.62 | 0.6205 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0