Yohhei commited on
Commit
4768a66
·
verified ·
1 Parent(s): 2975a96

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,505 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-small
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy@1
8
+ - cosine_accuracy@3
9
+ - cosine_accuracy@5
10
+ - cosine_accuracy@10
11
+ - cosine_precision@1
12
+ - cosine_precision@3
13
+ - cosine_precision@5
14
+ - cosine_precision@10
15
+ - cosine_recall@1
16
+ - cosine_recall@3
17
+ - cosine_recall@5
18
+ - cosine_recall@10
19
+ - cosine_ndcg@10
20
+ - cosine_mrr@10
21
+ - cosine_map@100
22
+ pipeline_tag: sentence-similarity
23
+ tags:
24
+ - sentence-transformers
25
+ - sentence-similarity
26
+ - feature-extraction
27
+ - generated_from_trainer
28
+ - dataset_size:16
29
+ - loss:MultipleNegativesRankingLoss
30
+ widget:
31
+ - source_sentence: Please contact each construction office of the Construction Bureau.
32
+ The police will respond in cooperation with the police and other authorities.
33
+ For the telephone number of each construction office, please refer to the link
34
+ "Area Management Offices and Construction Offices".
35
+ sentences:
36
+ - I have an abandoned vehicle on the street, what should I do?
37
+ - Do I need special permission to place a giant ad?
38
+ - What is katagatashi/tai?
39
+ - source_sentence: Currently, there are four Seseragi-no-Sato (Seseragi-no-Sato) oases
40
+ in the city filled with flowers and greenery, as an oasis of relaxation and luster.
41
+ How about touring the "Seseragi-no-Sato" while admiring the seasonal flowers?
42
+ Please take a stroll. For more information, please refer to the link "Flower Sewage
43
+ Treatment Plant and Seseragi no Sato (Sewage Treatment Plant and Seseragi no Sato)".
44
+ For more information, please refer to the link "Sewage Treatment Plants and Seseragi
45
+ no Sato (Flower Sewage Treatment Plants and Seseragi no Sato)".
46
+ sentences:
47
+ - I want to install a sign on the road. Do I need any permits?
48
+ - Who can I talk to about housing?
49
+ - I would like to know more about Seseragi no Sato.
50
+ - source_sentence: 'The Osaka Municipal Housing Information Center provides comprehensive
51
+ information on housing, and consists of the Housing Information Plaza, which provides
52
+ various consultations and information on housing, and the Osaka Kurashi-no Konjikan,
53
+ a museum of housing that exhibits the culture and history of housing and people''s
54
+ lives. Location and Access] Location: 6-4-20 Tenjinbashi, Kita-ku, Osaka Access:
55
+ - Direct connection from Exit 3 of Tenjinbashisuji Rokuchome Station on the Osaka
56
+ Metro Tanimachi Line, Sakaisuji Line, and Hankyu Railway - Approximately 650 m
57
+ north of Tenma Station on the JR Loop Line - Approximately 2 km by cab from Midosuji
58
+ South Exit of JR Osaka Station via Miyakojima-dori, 7 minutes by car By car: Approx.
59
+ 500 m from Nagara Exit on the Moriguchi Line of Hanshin Expressway via Miyakojima-dori
60
+ Street. ◆Housing Information Plaza Hours: Weekdays and Saturdays: 9:00-19:00,
61
+ Sundays and National Holidays: 10:00-17:00, Closed: Tuesdays (closed the following
62
+ day if Tuesday is a national vacation), the day after national holidays (except
63
+ Sundays and Mondays), year-end and New Year holidays (12/29 - 1/3) *Special holidays
64
+ may occur in addition to the above. ◆Housing Museum "Osaka Kurashi no Konjakukan"
65
+ Hours: 10:00 - 17:00 (admission until 16:30) Closed: Tuesdays, Year-end and New
66
+ Year holidays (12/29 - 1/3) *The museum may be open or closed on a temporary basis
67
+ in addition to the above. In addition to the above, the museum may be open or
68
+ closed temporarily. 6208-9224 Fax: 06-6202-7064'
69
+ sentences:
70
+ - Please tell me about the Osaka Municipal Housing Information Center.
71
+ - Where is advertising prohibited?
72
+ - How much is the admission fee to Osaka Kurashi-no-Museum?
73
+ - source_sentence: 'A pamphlet and leaflet, "Sewerage in Osaka City," which introduces
74
+ the sewerage system of Osaka City, including its structure and roles, are distributed
75
+ at City Hall and other locations. They are also available on the city website.
76
+ You can also tour the following sewerage facilities. All tours are free of charge.
77
+ Taikoh Sewer: You can visit the Taikoh Sewer, a designated cultural asset of Osaka
78
+ City. Those who wish to tour the underground facilities must apply in advance.
79
+ Maishima Sludge Center Sludge Treatment Facility】Persons wishing to tour the sludge
80
+ treatment facility are required to apply in advance. Sewage Treatment Plants】Persons
81
+ wishing to tour the facilities should contact the respective sewage treatment
82
+ plant in advance. (Tours may not be available due to construction work at sewage
83
+ treatment plants.) For details, please refer to the following links: "Leaflet
84
+ "Sewerage in Osaka City" (digest version)," "Pamphlet "Sewerage in Osaka City,"
85
+ "Taikoh Sewage Treatment Plant," "Maishima Sludge Center (sewage sludge treatment
86
+ plant)," "Osaka City Visual Sewage Plan," "Osaka Eco Kids: Learn Sewage! for more
87
+ information.'
88
+ sentences:
89
+ - I want to know how the sewage system works.
90
+ - How much is the rent for Osaka City's excellent rental housing for the elderly?
91
+ - Please tell me about K.K. General Rental Housing and K.K. Sumai Ringu.
92
+ - source_sentence: For posters, billboards, etc. on roads that are in violation of
93
+ the ordinance, we systematically provide corrective guidance and remove them,
94
+ as well as conduct road patrols as needed. In addition, for minor violations such
95
+ as posters and billboards, we also remove them through the activities of contractors
96
+ and citizen volunteers called "Katayaki-Tai". For details, please refer to the
97
+ link "Recruitment of "KATADACHI-TAI" (a system for removing simple advertisements
98
+ on the street)". For more information, please refer to the link "Simple Roadside
99
+ Advertisement Removal Activities" for details.
100
+ sentences:
101
+ - I am thinking of buying a house in Osaka City, is there any assistance available?
102
+ (Newlyweds and families raising children)
103
+ - What is the maximum size of a billboard or advertisement?
104
+ - What measures are in place to deal with objectionable signs and posters?
105
+ model-index:
106
+ - name: SentenceTransformer based on intfloat/multilingual-e5-small
107
+ results:
108
+ - task:
109
+ type: information-retrieval
110
+ name: Information Retrieval
111
+ dataset:
112
+ name: intfloat/multilingual e5 small
113
+ type: intfloat/multilingual-e5-small
114
+ metrics:
115
+ - type: cosine_accuracy@1
116
+ value: 0.75
117
+ name: Cosine Accuracy@1
118
+ - type: cosine_accuracy@3
119
+ value: 1.0
120
+ name: Cosine Accuracy@3
121
+ - type: cosine_accuracy@5
122
+ value: 1.0
123
+ name: Cosine Accuracy@5
124
+ - type: cosine_accuracy@10
125
+ value: 1.0
126
+ name: Cosine Accuracy@10
127
+ - type: cosine_precision@1
128
+ value: 0.75
129
+ name: Cosine Precision@1
130
+ - type: cosine_precision@3
131
+ value: 0.3333333333333333
132
+ name: Cosine Precision@3
133
+ - type: cosine_precision@5
134
+ value: 0.2
135
+ name: Cosine Precision@5
136
+ - type: cosine_precision@10
137
+ value: 0.1
138
+ name: Cosine Precision@10
139
+ - type: cosine_recall@1
140
+ value: 0.75
141
+ name: Cosine Recall@1
142
+ - type: cosine_recall@3
143
+ value: 1.0
144
+ name: Cosine Recall@3
145
+ - type: cosine_recall@5
146
+ value: 1.0
147
+ name: Cosine Recall@5
148
+ - type: cosine_recall@10
149
+ value: 1.0
150
+ name: Cosine Recall@10
151
+ - type: cosine_ndcg@10
152
+ value: 0.9077324383928644
153
+ name: Cosine Ndcg@10
154
+ - type: cosine_mrr@10
155
+ value: 0.875
156
+ name: Cosine Mrr@10
157
+ - type: cosine_map@100
158
+ value: 0.875
159
+ name: Cosine Map@100
160
+ ---
161
+
162
+ # SentenceTransformer based on intfloat/multilingual-e5-small
163
+
164
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
165
+
166
+ ## Model Details
167
+
168
+ ### Model Description
169
+ - **Model Type:** Sentence Transformer
170
+ - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
171
+ - **Maximum Sequence Length:** 512 tokens
172
+ - **Output Dimensionality:** 384 tokens
173
+ - **Similarity Function:** Cosine Similarity
174
+ <!-- - **Training Dataset:** Unknown -->
175
+ <!-- - **Language:** Unknown -->
176
+ <!-- - **License:** Unknown -->
177
+
178
+ ### Model Sources
179
+
180
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
181
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
182
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
183
+
184
+ ### Full Model Architecture
185
+
186
+ ```
187
+ SentenceTransformer(
188
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
189
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
190
+ (2): Normalize()
191
+ )
192
+ ```
193
+
194
+ ## Usage
195
+
196
+ ### Direct Usage (Sentence Transformers)
197
+
198
+ First install the Sentence Transformers library:
199
+
200
+ ```bash
201
+ pip install -U sentence-transformers
202
+ ```
203
+
204
+ Then you can load this model and run inference.
205
+ ```python
206
+ from sentence_transformers import SentenceTransformer
207
+
208
+ # Download from the 🤗 Hub
209
+ model = SentenceTransformer("Yohhei/batch32-100")
210
+ # Run inference
211
+ sentences = [
212
+ 'For posters, billboards, etc. on roads that are in violation of the ordinance, we systematically provide corrective guidance and remove them, as well as conduct road patrols as needed. In addition, for minor violations such as posters and billboards, we also remove them through the activities of contractors and citizen volunteers called "Katayaki-Tai". For details, please refer to the link "Recruitment of "KATADACHI-TAI" (a system for removing simple advertisements on the street)". For more information, please refer to the link "Simple Roadside Advertisement Removal Activities" for details.',
213
+ 'What measures are in place to deal with objectionable signs and posters?',
214
+ 'I am thinking of buying a house in Osaka City, is there any assistance available? (Newlyweds and families raising children)',
215
+ ]
216
+ embeddings = model.encode(sentences)
217
+ print(embeddings.shape)
218
+ # [3, 384]
219
+
220
+ # Get the similarity scores for the embeddings
221
+ similarities = model.similarity(embeddings, embeddings)
222
+ print(similarities.shape)
223
+ # [3, 3]
224
+ ```
225
+
226
+ <!--
227
+ ### Direct Usage (Transformers)
228
+
229
+ <details><summary>Click to see the direct usage in Transformers</summary>
230
+
231
+ </details>
232
+ -->
233
+
234
+ <!--
235
+ ### Downstream Usage (Sentence Transformers)
236
+
237
+ You can finetune this model on your own dataset.
238
+
239
+ <details><summary>Click to expand</summary>
240
+
241
+ </details>
242
+ -->
243
+
244
+ <!--
245
+ ### Out-of-Scope Use
246
+
247
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
248
+ -->
249
+
250
+ ## Evaluation
251
+
252
+ ### Metrics
253
+
254
+ #### Information Retrieval
255
+ * Dataset: `intfloat/multilingual-e5-small`
256
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
257
+
258
+ | Metric | Value |
259
+ |:--------------------|:----------|
260
+ | cosine_accuracy@1 | 0.75 |
261
+ | cosine_accuracy@3 | 1.0 |
262
+ | cosine_accuracy@5 | 1.0 |
263
+ | cosine_accuracy@10 | 1.0 |
264
+ | cosine_precision@1 | 0.75 |
265
+ | cosine_precision@3 | 0.3333 |
266
+ | cosine_precision@5 | 0.2 |
267
+ | cosine_precision@10 | 0.1 |
268
+ | cosine_recall@1 | 0.75 |
269
+ | cosine_recall@3 | 1.0 |
270
+ | cosine_recall@5 | 1.0 |
271
+ | cosine_recall@10 | 1.0 |
272
+ | cosine_ndcg@10 | 0.9077 |
273
+ | cosine_mrr@10 | 0.875 |
274
+ | **cosine_map@100** | **0.875** |
275
+
276
+ <!--
277
+ ## Bias, Risks and Limitations
278
+
279
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
280
+ -->
281
+
282
+ <!--
283
+ ### Recommendations
284
+
285
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
286
+ -->
287
+
288
+ ## Training Details
289
+
290
+ ### Training Dataset
291
+
292
+ #### Unnamed Dataset
293
+
294
+
295
+ * Size: 16 training samples
296
+ * Columns: <code>positive</code> and <code>anchor</code>
297
+ * Approximate statistics based on the first 1000 samples:
298
+ | | positive | anchor |
299
+ |:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
300
+ | type | string | string |
301
+ | details | <ul><li>min: 51 tokens</li><li>mean: 226.69 tokens</li><li>max: 419 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 16.81 tokens</li><li>max: 31 tokens</li></ul> |
302
+ * Samples:
303
+ | positive | anchor |
304
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
305
+ | <code>The following is a summary of K.H.I. General Rental Housing and K.H.I. Sumai Ringu. Outline】 ● KLH General Rental Housing and KLH Sumai Ringu are rental housing units for middle class households where the annual income of the applicant household must be within a certain range. The public corporation's Sumai Ringu housing is a unit to which the government's specified excellent rental housing system, etc., is applied, and the government and Osaka City subsidize a portion of the rent for a certain period of time, depending on the income of the household moving in. Applications for vacant units are accepted on an as-needed basis. Please refer to the "List of Apartment Complexes" at the link below. Inquiries: ◆Osaka City Housing Corporation, Housing Management Department, Management Division, Recruitment Section Telephone: 06-6882-9000* Weekdays: 9:00 - 19:00 (Tuesdays and the day after national holidays (weekdays): 9:00 - 17:30) Saturdays: 9:00 - 19:00 Sundays and holidays: 10:00 - 17:00, except during the year-end and New Year holidays (December 29 - January 3).</code> | <code>Please tell me about K.K. General Rental Housing and K.K. Sumai Ringu.</code> |
306
+ | <code>There are permit criteria for each property for wall boards, towers (rooftop/ground), and boards (rooftop/ground), and permit criteria vary by location. Please refer to the "Permit Criteria" in the "Outdoor Advertisement Bookmark. (Downloadable from the website) △Link to "https://www.city.osaka.lg.jp/kensetsu/page/0000372127.html屋外広告物の許可について (Outdoor Advertisement Bookmark, Outdoor Advertisement Ordinance, etc.) [Inquiries] ◆Construction Bureau, Administration Division Phone: 06-6615-6687 Fax: 06-6615-6576</code> | <code>What is the maximum size of a billboard or advertisement?</code> |
307
+ | <code>Areas or properties where advertising materials may not be displayed are as follows In addition to the above, the following areas or properties are prohibited from displaying advertising materials: - Areas along the Hanshin Expressway up to 50 m on both sides and 15 m above the road surface level - Areas within the grounds of ancient tombs and cemeteries - Bridges, roadside trees, traffic signals, pedestrian railings, utility poles, mailboxes, transmission towers, statues, monuments, etc. - The Okawa Wind Area from Genpachi Bridge to Tenmabashi Bridge. In addition to the above, the display of posters, billboards, etc., advertising flags, and standing signs, etc., is prohibited on the following roads and in areas or locations facing these roads. Midosuji (from Osaka Station to Namba Station) ●Sakaisuji (from Naniwabashi to Nipponbashi) ●Tosabori Dori (from Higobashi to Yoshiyabashi) ●Uemachi-suji (from Otemae 1-chome, Chuo-ku to Hoenzaka 1-chome, Chuo-ku) ●Nagahori Dori (from Minami-Senba 1-chome, Chuo-ku to Minami Senba 1-chome, Chuo-ku) Dotonbori River promenade (from east side of Sumiyoshi Bridge to west side of Nihonbashi Bridge)-Please refer to the link. https://www.city.osaka.lg.jp/kensetsu/page/ 0000372127.htmlAbout Permission for Outdoor Advertisements (Outdoor Advertisement Booklet, Outdoor Advertisement Ordinance, etc.) [Inquiries: ◆Construction Bureau, Administration Division Tel: 06-6615-6687 Fax: 06-6615-6576</code> | <code>Where is advertising prohibited?</code> |
308
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
309
+ ```json
310
+ {
311
+ "scale": 20.0,
312
+ "similarity_fct": "cos_sim"
313
+ }
314
+ ```
315
+
316
+ ### Training Hyperparameters
317
+ #### Non-Default Hyperparameters
318
+
319
+ - `eval_strategy`: steps
320
+ - `per_device_train_batch_size`: 32
321
+ - `per_device_eval_batch_size`: 16
322
+ - `learning_rate`: 2e-05
323
+ - `num_train_epochs`: 1
324
+ - `warmup_ratio`: 0.1
325
+ - `fp16`: True
326
+ - `batch_sampler`: no_duplicates
327
+
328
+ #### All Hyperparameters
329
+ <details><summary>Click to expand</summary>
330
+
331
+ - `overwrite_output_dir`: False
332
+ - `do_predict`: False
333
+ - `eval_strategy`: steps
334
+ - `prediction_loss_only`: True
335
+ - `per_device_train_batch_size`: 32
336
+ - `per_device_eval_batch_size`: 16
337
+ - `per_gpu_train_batch_size`: None
338
+ - `per_gpu_eval_batch_size`: None
339
+ - `gradient_accumulation_steps`: 1
340
+ - `eval_accumulation_steps`: None
341
+ - `torch_empty_cache_steps`: None
342
+ - `learning_rate`: 2e-05
343
+ - `weight_decay`: 0.0
344
+ - `adam_beta1`: 0.9
345
+ - `adam_beta2`: 0.999
346
+ - `adam_epsilon`: 1e-08
347
+ - `max_grad_norm`: 1.0
348
+ - `num_train_epochs`: 1
349
+ - `max_steps`: -1
350
+ - `lr_scheduler_type`: linear
351
+ - `lr_scheduler_kwargs`: {}
352
+ - `warmup_ratio`: 0.1
353
+ - `warmup_steps`: 0
354
+ - `log_level`: passive
355
+ - `log_level_replica`: warning
356
+ - `log_on_each_node`: True
357
+ - `logging_nan_inf_filter`: True
358
+ - `save_safetensors`: True
359
+ - `save_on_each_node`: False
360
+ - `save_only_model`: False
361
+ - `restore_callback_states_from_checkpoint`: False
362
+ - `no_cuda`: False
363
+ - `use_cpu`: False
364
+ - `use_mps_device`: False
365
+ - `seed`: 42
366
+ - `data_seed`: None
367
+ - `jit_mode_eval`: False
368
+ - `use_ipex`: False
369
+ - `bf16`: False
370
+ - `fp16`: True
371
+ - `fp16_opt_level`: O1
372
+ - `half_precision_backend`: auto
373
+ - `bf16_full_eval`: False
374
+ - `fp16_full_eval`: False
375
+ - `tf32`: None
376
+ - `local_rank`: 0
377
+ - `ddp_backend`: None
378
+ - `tpu_num_cores`: None
379
+ - `tpu_metrics_debug`: False
380
+ - `debug`: []
381
+ - `dataloader_drop_last`: False
382
+ - `dataloader_num_workers`: 0
383
+ - `dataloader_prefetch_factor`: None
384
+ - `past_index`: -1
385
+ - `disable_tqdm`: False
386
+ - `remove_unused_columns`: True
387
+ - `label_names`: None
388
+ - `load_best_model_at_end`: False
389
+ - `ignore_data_skip`: False
390
+ - `fsdp`: []
391
+ - `fsdp_min_num_params`: 0
392
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
393
+ - `fsdp_transformer_layer_cls_to_wrap`: None
394
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
395
+ - `deepspeed`: None
396
+ - `label_smoothing_factor`: 0.0
397
+ - `optim`: adamw_torch
398
+ - `optim_args`: None
399
+ - `adafactor`: False
400
+ - `group_by_length`: False
401
+ - `length_column_name`: length
402
+ - `ddp_find_unused_parameters`: None
403
+ - `ddp_bucket_cap_mb`: None
404
+ - `ddp_broadcast_buffers`: False
405
+ - `dataloader_pin_memory`: True
406
+ - `dataloader_persistent_workers`: False
407
+ - `skip_memory_metrics`: True
408
+ - `use_legacy_prediction_loop`: False
409
+ - `push_to_hub`: False
410
+ - `resume_from_checkpoint`: None
411
+ - `hub_model_id`: None
412
+ - `hub_strategy`: every_save
413
+ - `hub_private_repo`: False
414
+ - `hub_always_push`: False
415
+ - `gradient_checkpointing`: False
416
+ - `gradient_checkpointing_kwargs`: None
417
+ - `include_inputs_for_metrics`: False
418
+ - `eval_do_concat_batches`: True
419
+ - `fp16_backend`: auto
420
+ - `push_to_hub_model_id`: None
421
+ - `push_to_hub_organization`: None
422
+ - `mp_parameters`:
423
+ - `auto_find_batch_size`: False
424
+ - `full_determinism`: False
425
+ - `torchdynamo`: None
426
+ - `ray_scope`: last
427
+ - `ddp_timeout`: 1800
428
+ - `torch_compile`: False
429
+ - `torch_compile_backend`: None
430
+ - `torch_compile_mode`: None
431
+ - `dispatch_batches`: None
432
+ - `split_batches`: None
433
+ - `include_tokens_per_second`: False
434
+ - `include_num_input_tokens_seen`: False
435
+ - `neftune_noise_alpha`: None
436
+ - `optim_target_modules`: None
437
+ - `batch_eval_metrics`: False
438
+ - `eval_on_start`: False
439
+ - `eval_use_gather_object`: False
440
+ - `batch_sampler`: no_duplicates
441
+ - `multi_dataset_batch_sampler`: proportional
442
+
443
+ </details>
444
+
445
+ ### Training Logs
446
+ | Epoch | Step | intfloat/multilingual-e5-small_cosine_map@100 |
447
+ |:-----:|:----:|:---------------------------------------------:|
448
+ | 0 | 0 | 0.875 |
449
+
450
+
451
+ ### Framework Versions
452
+ - Python: 3.8.10
453
+ - Sentence Transformers: 3.0.1
454
+ - Transformers: 4.44.2
455
+ - PyTorch: 2.1.2+cu121
456
+ - Accelerate: 0.32.0
457
+ - Datasets: 2.19.1
458
+ - Tokenizers: 0.19.1
459
+
460
+ ## Citation
461
+
462
+ ### BibTeX
463
+
464
+ #### Sentence Transformers
465
+ ```bibtex
466
+ @inproceedings{reimers-2019-sentence-bert,
467
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
468
+ author = "Reimers, Nils and Gurevych, Iryna",
469
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
470
+ month = "11",
471
+ year = "2019",
472
+ publisher = "Association for Computational Linguistics",
473
+ url = "https://arxiv.org/abs/1908.10084",
474
+ }
475
+ ```
476
+
477
+ #### MultipleNegativesRankingLoss
478
+ ```bibtex
479
+ @misc{henderson2017efficient,
480
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
481
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
482
+ year={2017},
483
+ eprint={1705.00652},
484
+ archivePrefix={arXiv},
485
+ primaryClass={cs.CL}
486
+ }
487
+ ```
488
+
489
+ <!--
490
+ ## Glossary
491
+
492
+ *Clearly define terms in order to be accessible across audiences.*
493
+ -->
494
+
495
+ <!--
496
+ ## Model Card Authors
497
+
498
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
499
+ -->
500
+
501
+ <!--
502
+ ## Model Card Contact
503
+
504
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
505
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-small",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a551720dc32090a6bf01ac36849b890487491b87dbaf5b3b8352df24176e05f
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }