YangsHao commited on
Commit
0d4f5ae
·
1 Parent(s): aa8361c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -29,7 +29,7 @@ Then you can use the model like this:
29
  from sentence_transformers import SentenceTransformer
30
  sentences = ["汪汪队立大功第1季动画动画冒险剧情本领高强的狗狗巡逻队精通科技的10岁男孩", "超人总动员2喜剧动作动画冒险家庭亲情超级英雄励志超能先生变奶爸超人家族时隔14年强势回归"]
31
 
32
- model = SentenceTransformer('{MODEL_NAME}')
33
  embeddings = model.encode(sentences)
34
  print(embeddings)
35
  ```
@@ -49,11 +49,11 @@ def cls_pooling(model_output, attention_mask):
49
 
50
 
51
  # Sentences we want sentence embeddings for
52
- sentences = ['This is an example sentence', 'Each sentence is converted']
53
 
54
  # Load model from HuggingFace Hub
55
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
56
- model = AutoModel.from_pretrained('{MODEL_NAME}')
57
 
58
  # Tokenize sentences
59
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
29
  from sentence_transformers import SentenceTransformer
30
  sentences = ["汪汪队立大功第1季动画动画冒险剧情本领高强的狗狗巡逻队精通科技的10岁男孩", "超人总动员2喜剧动作动画冒险家庭亲情超级英雄励志超能先生变奶爸超人家族时隔14年强势回归"]
31
 
32
+ model = SentenceTransformer('YangsHao/RecBERT')
33
  embeddings = model.encode(sentences)
34
  print(embeddings)
35
  ```
 
49
 
50
 
51
  # Sentences we want sentence embeddings for
52
+ sentences = ['汪汪队立大功第1季动画动画冒险剧情本领高强的狗狗巡逻队精通科技的10岁男孩', '超人总动员2喜剧动作动画冒险家庭亲情超级英雄励志超能先生变奶爸超人家族时隔14年强势回归']
53
 
54
  # Load model from HuggingFace Hub
55
+ tokenizer = AutoTokenizer.from_pretrained('YangsHao/RecBERT')
56
+ model = AutoModel.from_pretrained('YangsHao/RecBERT')
57
 
58
  # Tokenize sentences
59
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')